Rotary INS self-alignment method based on backtracking filtering under large misalignment angle

回溯 计算机科学 控制理论(社会学) 航空航天工程 工程类 计算机视觉 算法 人工智能 控制(管理)
作者
Chenming Zhang,Jie Li,Kaiqiang Feng,Xiaokai Wei
出处
期刊:Measurement [Elsevier BV]
卷期号:231: 114537-114537
标识
DOI:10.1016/j.measurement.2024.114537
摘要

In the initial alignment, the accuracy of static base alignment is mainly limited by the short alignment time, the poor observability of azimuth misalignment, and sensor error. Traditional alignment methods cannot take into account the alignment time and accuracy without relying on external measurement assistance. In order to solve these problems, a new alignment method for RINS (Rotary Inertial Navigation System) based on BKF (Backtracking Kalman filtering) is proposed in this article. Firstly, innovative rotation modulation technology is introduced into the initial alignment process to eliminate the influence of sensors bias and improve the observability of azimuth misalignment. Secondly, the first forward filtering constructs KF for optimal estimation while storing the data from RINS into computer. Finally, the result of the last optimal estimation is used as the initial, and proposed scheme performs multiple forward filtering and backtracking filtering processes. Then, an accurate attitude will be obtained quickly. The alignment accuracy of the proposed scheme under large misalignment angle was evaluated through simulation test and shearer alignment experiment. Comparing with other effective static base alignment schemes, the accuracy of azimuth misalignment angle in the proposed scheme was improved at least 65%, and alignment duration of proposed scheme reduced to 85% of these schemes. The experiment has proven that proposed scheme is a high precision self-alignment method suitable for underground shearer, which can obtain accurate initial attitude under short time and large misalignment angle conditions without the assistance from external measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助舒心的大有采纳,获得30
1秒前
1秒前
研友_VZG7GZ应助bofu采纳,获得10
1秒前
堪尔风完成签到 ,获得积分10
2秒前
3秒前
科研通AI5应助奋斗的橘子采纳,获得10
3秒前
Isabelee完成签到,获得积分10
3秒前
岚12完成签到 ,获得积分10
5秒前
6秒前
仁爱裘完成签到,获得积分10
6秒前
7秒前
Isabelee发布了新的文献求助10
8秒前
chichenglin发布了新的文献求助10
9秒前
领导范儿应助FF采纳,获得10
10秒前
10秒前
10秒前
晚湖发布了新的文献求助10
11秒前
汉域人发布了新的文献求助10
12秒前
JamesPei应助bofu采纳,获得10
12秒前
pluto应助超级月光采纳,获得20
13秒前
14秒前
loka完成签到,获得积分10
15秒前
小芋圆儿发布了新的文献求助10
16秒前
16秒前
Dawn完成签到,获得积分10
16秒前
16秒前
无算浮白完成签到,获得积分10
17秒前
汉域人完成签到,获得积分10
18秒前
18秒前
TIMF14完成签到,获得积分10
19秒前
hutu发布了新的文献求助10
19秒前
酷炫向日葵完成签到,获得积分10
19秒前
19秒前
思源应助bofu采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777