A Novel Sequence-to-Sequence-Based Deep Learning Model for Multistep Load Forecasting

计算机科学 自回归积分移动平均 水准点(测量) 块(置换群论) 人工神经网络 自回归模型 序列(生物学) 深度学习 人工智能 时间序列 循环神经网络 过程(计算) 机器学习 数据挖掘 计量经济学 几何学 数学 大地测量学 生物 经济 遗传学 地理 操作系统
作者
Renzhi Lu,Ruichang Bai,Ruidong Li,Lijun Zhu,Mingyang Sun,Feng Xiao,Dong Wang,Huaming Wu,Yuemin Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2023.3329466
摘要

Load forecasting is critical to the task of energy management in power systems, for example, balancing supply and demand and minimizing energy transaction costs. There are many approaches used for load forecasting such as the support vector regression (SVR), the autoregressive integrated moving average (ARIMA), and neural networks, but most of these methods focus on single-step load forecasting, whereas multistep load forecasting can provide better insights for optimizing the energy resource allocation and assisting the decision-making process. In this work, a novel sequence-to-sequence (Seq2Seq)-based deep learning model based on a time series decomposition strategy for multistep load forecasting is proposed. The model consists of a series of basic blocks, each of which includes one encoder and two decoders; and all basic blocks are connected by residuals. In the inner of each basic block, the encoder is realized by temporal convolution network (TCN) for its benefit of parallel computing, and the decoder is implemented by long short-term memory (LSTM) neural network to predict and estimate time series. During the forecasting process, each basic block is forecasted individually. The final forecasted result is the aggregation of the predicted results in all basic blocks. Several cases within multiple real-world datasets are conducted to evaluate the performance of the proposed model. The results demonstrate that the proposed model achieves the best accuracy compared with several benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
czb完成签到,获得积分10
3秒前
3秒前
高大又蓝完成签到,获得积分10
4秒前
李健应助追寻的冬寒采纳,获得10
4秒前
张兮兮发布了新的文献求助10
4秒前
wll1091完成签到 ,获得积分10
5秒前
czb发布了新的文献求助10
5秒前
浩然完成签到,获得积分10
6秒前
累啊发布了新的文献求助10
7秒前
传奇3应助追寻的冬寒采纳,获得10
11秒前
11秒前
13秒前
BEN完成签到,获得积分10
13秒前
15秒前
科研通AI5应助wasiwan采纳,获得10
15秒前
233333发布了新的文献求助10
16秒前
马户的崛起完成签到,获得积分10
16秒前
累啊完成签到,获得积分10
18秒前
白桦林泪发布了新的文献求助10
20秒前
yehata发布了新的文献求助10
21秒前
奥特超曼完成签到,获得积分10
21秒前
25秒前
26秒前
Akim应助单薄的八宝粥采纳,获得10
26秒前
28秒前
丘比特应助方方方方方采纳,获得10
30秒前
hanhan发布了新的文献求助10
30秒前
31秒前
马麻薯完成签到,获得积分10
31秒前
hyx完成签到,获得积分10
31秒前
wangq246发布了新的文献求助10
33秒前
SciGPT应助11111采纳,获得10
33秒前
33秒前
冯宝宝发布了新的文献求助10
33秒前
35秒前
37秒前
77完成签到 ,获得积分10
37秒前
一一发布了新的文献求助10
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997