Multi-scale spatial and spectral feature fusion for soil carbon content prediction based on hyperspectral images

高光谱成像 比例(比率) 特征(语言学) 融合 碳纤维 内容(测量理论) 遥感 环境科学 空间生态学 土壤碳 土壤科学 模式识别(心理学) 计算机科学 人工智能 土壤水分 数学 生态学 地质学 地理 地图学 生物 数学分析 语言学 哲学 算法 复合数
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan,Yan Liu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:160: 111843-111843 被引量:1
标识
DOI:10.1016/j.ecolind.2024.111843
摘要

Soil carbon content prediction based on hyperspectral images can achieve large-scale spatial measurement, which has the advantages of wide coverage and fast information collection, is more suitable for field data collection. However, the research on soil carbon content prediction based on hyperspectral images mainly focuses on feature extraction of spectral information, ignoring the spatial information, and cannot well reveal the intrinsic structural characteristics of data. Aiming at the lack of spatial features consideration in hyperspectral images, soil carbon content prediction methods based on multi-scale feature fusion are proposed by hyperspectral image. At the same time of extracting spectral features from hyperspectral images, the spatial information is used for the first time and a multi-scale spectral and spatial feature network (SpeSpaMN) is designed. In the SpeSpaMN, the multi-scale spectral feature network (SpeMN) is constructed to extract spectral features, the multi-scale spatial feature network (SpaMN) is constructed to extract spatial features. The two networks are fused by using the complementary relationship between different scale features to achieve soil carbon content prediction based on multi-scale feature fusion. The results showed that SpeSpaMN had the best results compared to other methods, followed by the method of SpeMN. The RPD of Inland, Aoshan Bay and Jiaozhou Bay samples based on SpeSpaMN were increased by 47.36%, 37.96% and 4.30% respectively. This paper can effectively solve the problem of the deep fusion of spatial and spectral features in the soil carbon content prediction by hyperspectral image, so as to improve the accuracy and stability of soil carbon content prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin发布了新的文献求助100
3秒前
Ava应助kyb5623采纳,获得10
3秒前
4秒前
5秒前
xty发布了新的文献求助10
6秒前
huyz发布了新的文献求助10
8秒前
酚酞v完成签到 ,获得积分10
9秒前
简单的张哈哈完成签到,获得积分10
9秒前
FashionBoy应助小龙采纳,获得10
9秒前
顾矜应助xty采纳,获得10
10秒前
llnysl完成签到 ,获得积分10
10秒前
猪猪hero发布了新的文献求助10
11秒前
wjx完成签到 ,获得积分10
12秒前
lam完成签到,获得积分10
13秒前
哭泣灯泡应助猛男采纳,获得10
13秒前
花花完成签到,获得积分10
14秒前
共享精神应助秋作采纳,获得10
16秒前
17秒前
香蕉觅云应助舒心的乌龟采纳,获得10
17秒前
YP发布了新的文献求助10
18秒前
18秒前
ffchen111完成签到 ,获得积分10
18秒前
Beginner完成签到,获得积分10
18秒前
zz完成签到,获得积分10
19秒前
andrele应助忧虑的代容采纳,获得10
19秒前
机灵鞋垫发布了新的文献求助10
23秒前
翻斗花园爆破手小胡完成签到,获得积分10
24秒前
结实断缘发布了新的文献求助10
24秒前
24秒前
小李发布了新的文献求助20
27秒前
肖战完成签到,获得积分20
27秒前
27秒前
Vi发布了新的文献求助10
28秒前
32秒前
Lucas选李华完成签到 ,获得积分10
32秒前
orixero应助幽默的傲南采纳,获得10
32秒前
大胆的弼完成签到,获得积分10
32秒前
机灵鞋垫完成签到,获得积分10
33秒前
cyx发布了新的文献求助10
34秒前
bkagyin应助会飞的扁担采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789447
求助须知:如何正确求助?哪些是违规求助? 3334390
关于积分的说明 10270027
捐赠科研通 3050866
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732