亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence for Anesthesiology Board–Style Examination Questions: Role of Large Language Models

医学 麻醉学 背景(考古学) 一致性(知识库) 医学教育 病理 人工智能 计算机科学 生物 古生物学
作者
Adnan Khan,Rayaan Yunus,Mahad Sohail,Taha A. Rehman,Shirin Saeed,Yifan Bu,Cullen D. Jackson,Aidan Sharkey,Feroze Mahmood,Robina Matyal
出处
期刊:Journal of Cardiothoracic and Vascular Anesthesia [Elsevier BV]
卷期号:38 (5): 1251-1259 被引量:7
标识
DOI:10.1053/j.jvca.2024.01.032
摘要

New artificial intelligence tools have been developed that have implications for medical usage. Large language models (LLMs), such as the widely used ChatGPT developed by OpenAI, have not been explored in the context of anesthesiology education. Understanding the reliability of various publicly available LLMs for medical specialties could offer insight into their understanding of the physiology, pharmacology, and practical applications of anesthesiology. An exploratory prospective review was conducted using 3 commercially available LLMs––OpenAI's ChatGPT GPT-3.5 version (GPT-3.5), OpenAI's ChatGPT GPT-4 (GPT-4), and Google's Bard––on questions from a widely used anesthesia board examination review book. Of the 884 eligible questions, the overall correct answer rates were 47.9% for GPT-3.5, 69.4% for GPT-4, and 45.2% for Bard. GPT-4 exhibited significantly higher performance than both GPT-3.5 and Bard (p = 0.001 and p < 0.001, respectively). None of the LLMs met the criteria required to secure American Board of Anesthesiology certification, according to the 70% passing score approximation. GPT-4 significantly outperformed GPT-3.5 and Bard in terms of overall performance, but lacked consistency in providing explanations that aligned with scientific and medical consensus. Although GPT-4 shows promise, current LLMs are not sufficiently advanced to answer anesthesiology board examination questions with passing success. Further iterations and domain-specific training may enhance their utility in medical education. New artificial intelligence tools have been developed that have implications for medical usage. Large language models (LLMs), such as the widely used ChatGPT developed by OpenAI, have not been explored in the context of anesthesiology education. Understanding the reliability of various publicly available LLMs for medical specialties could offer insight into their understanding of the physiology, pharmacology, and practical applications of anesthesiology. An exploratory prospective review was conducted using 3 commercially available LLMs––OpenAI's ChatGPT GPT-3.5 version (GPT-3.5), OpenAI's ChatGPT GPT-4 (GPT-4), and Google's Bard––on questions from a widely used anesthesia board examination review book. Of the 884 eligible questions, the overall correct answer rates were 47.9% for GPT-3.5, 69.4% for GPT-4, and 45.2% for Bard. GPT-4 exhibited significantly higher performance than both GPT-3.5 and Bard (p = 0.001 and p < 0.001, respectively). None of the LLMs met the criteria required to secure American Board of Anesthesiology certification, according to the 70% passing score approximation. GPT-4 significantly outperformed GPT-3.5 and Bard in terms of overall performance, but lacked consistency in providing explanations that aligned with scientific and medical consensus. Although GPT-4 shows promise, current LLMs are not sufficiently advanced to answer anesthesiology board examination questions with passing success. Further iterations and domain-specific training may enhance their utility in medical education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呵呵心情发布了新的文献求助10
6秒前
呵呵心情完成签到,获得积分20
12秒前
Dannnn发布了新的文献求助10
17秒前
倾听昆语完成签到 ,获得积分10
21秒前
Kkk完成签到 ,获得积分10
23秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
大胆绮完成签到,获得积分10
29秒前
神外王001完成签到 ,获得积分10
34秒前
LRxxx完成签到 ,获得积分10
59秒前
风趣的靖雁完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助lll采纳,获得10
2分钟前
3分钟前
3分钟前
budingman发布了新的文献求助10
3分钟前
budingman发布了新的文献求助10
3分钟前
5分钟前
budingman发布了新的文献求助10
5分钟前
DDL发布了新的文献求助10
5分钟前
科研通AI5应助budingman采纳,获得10
5分钟前
5分钟前
budingman发布了新的文献求助10
5分钟前
5分钟前
5分钟前
培培完成签到 ,获得积分10
6分钟前
重要千青完成签到,获得积分10
7分钟前
后陡门的夏天完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
豌豆发布了新的文献求助10
8分钟前
烟花应助豌豆采纳,获得10
8分钟前
lll完成签到,获得积分10
8分钟前
8分钟前
lll发布了新的文献求助10
8分钟前
9分钟前
黑粉头头完成签到,获得积分10
9分钟前
激动的似狮完成签到,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212793
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667304
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229