亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ct-based subregional radiomics using hand-crafted and deep learning features for prediction of therapeutic response to anti-PD1 therapy in NSCLC

接收机工作特性 组内相关 置信区间 逻辑回归 人工智能 人口 医学 肺癌 特征选择 无线电技术 核医学 机器学习 统计 计算机科学 肿瘤科 数学 内科学 再现性 环境卫生
作者
Yue Hu,Tao Jiang,Huan Wang,Jiangdian Song,Zhiguang Yang,Yan Wang,Juan Su,Meiqi Jin,Shijie Chang,Kexue Deng,Wenyan Jiang
出处
期刊:Physica Medica [Elsevier BV]
卷期号:117: 103200-103200 被引量:1
标识
DOI:10.1016/j.ejmp.2023.103200
摘要

Purpose To develop and externally validate subregional radiomics for predicting therapeutic response to anti-PD1 therapy in non-small-cell lung cancer (NSCLC). Methods Sixty-six patients from center 1 served as training and internal validation cohorts. Thirty patients from center 2 and thirty patients from center 3 served as external validation 1 and external validation 2 cohorts, respectively. The lesions identified on CT scans were subdivided into two phenotypically consistent subregions by automatic clustering on the patient-level and population-level (denoted as marginal S1 and inner S2). Handcrafted and deep learning-based features were extracted separately from the entire tumor region and subregions, then selected using the intraclass correlation coefficient and least absolute shrinkage and selection operator regression (LASSO). Radiomics signatures (RSs) were built integrating the selected features and correlation coefficients using a logistic regression method. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to assess the RSs. Results RSs derived from S1 outperformed those from S2 and the whole tumor region for both handcrafted and deep learning features. The Fusion-RS incorporating the two feature types achieved the best prediction performance in training (AUC = 0.947, 95 % Confidence Interval [CI] 0.905–0.989, SPE = 0.895, SEN = 0.878), internal validation (AUC = 0.875, 95 % CI: 0.782–0.969, SPE = 0.724, SEN = 0.952), external validation 1 (AUC = 0.836, 95 % CI: 0.694–0.977, SPE = 1.000, SEN = 0.533) and external validation 2 (AUC = 0.783, 95 % CI: 0.613–0.953, SPE = 0.765, SEN = 0.692) cohorts. Conclusions Subregional radiomics analysis can be useful for predicting therapeutic response to anti-PD1 therapy. The developed Fusion-RS may be considered as a potential non-invasive tool for individual treatment managements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
25秒前
嘿嘿应助科研通管家采纳,获得10
25秒前
嘿嘿应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
39秒前
44秒前
moon发布了新的文献求助10
48秒前
Tim完成签到 ,获得积分0
1分钟前
Sue完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
moon完成签到,获得积分20
2分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
土豆大王完成签到 ,获得积分10
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
KONOHA完成签到,获得积分10
3分钟前
隐形曼青应助Joy采纳,获得30
3分钟前
嘿嘿应助科研通管家采纳,获得10
4分钟前
嘿嘿应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
俊逸沛菡完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
dx完成签到,获得积分10
5分钟前
调皮千兰发布了新的文献求助10
5分钟前
稳重淇完成签到 ,获得积分10
5分钟前
虚幻的城发布了新的文献求助10
5分钟前
debu9完成签到,获得积分10
5分钟前
aa完成签到,获得积分10
5分钟前
5分钟前
深情安青应助虚幻的城采纳,获得10
5分钟前
高桥凉介完成签到 ,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130492
求助须知:如何正确求助?哪些是违规求助? 3667400
关于积分的说明 11600763
捐赠科研通 3365539
什么是DOI,文献DOI怎么找? 1849091
邀请新用户注册赠送积分活动 912878
科研通“疑难数据库(出版商)”最低求助积分说明 828355