Meta-MolNet: A Cross-Domain Benchmark for Few Examples Drug Discovery

药物发现 水准点(测量) 一般化 机器学习 领域(数学分析) 计算机科学 人工智能 财产(哲学) 领域知识 任务(项目管理) 数据挖掘 数学 生物信息学 生物 地理 工程类 哲学 数学分析 认识论 系统工程 大地测量学
作者
Qiujie Lv,Guanxing Chen,Ziduo Yang,Weihe Zhong,Calvin Yu‐Chian Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4849-4863 被引量:11
标识
DOI:10.1109/tnnls.2024.3359657
摘要

Predicting the pharmacological activity, toxicity, and pharmacokinetic properties of molecules is a central task in drug discovery. Existing machine learning methods are transferred from one resource rich molecular property to another data scarce property in the same scaffold dataset. However, existing models may produce fragile and highly uncertain predictions for new scaffold molecules. And these models were tested on different benchmarks, which seriously affected the quality of their evaluation results. In this article, we introduce Meta-MolNet, a collection of data benchmark and algorithms, which is a standard benchmark platform for measuring model generalization and uncertainty quantification capabilities. Meta-MolNet manages a wide range of molecular datasets with high ratio of molecules/scaffolds, which often leads to more difficult data shift and generalization problems. Furthermore, we propose a graph attention network based on cross-domain meta-learning, Meta-GAT, which uses bilevel optimization to learn meta-knowledge from the scaffold family molecular dataset in the source domain. Meta-GAT benefits from meta-knowledge that reduces the requirement of sample complexity to enable reliable predictions of new scaffold molecules in the target domain through internal iteration of a few examples. We evaluate existing methods as baselines for the community, and the Meta-MolNet benchmark demonstrates the effectiveness of measuring the proposed algorithm in domain generalization and uncertainty quantification. Extensive experiments demonstrate that the Meta-GAT model has state-of-the-art domain generalization performance and robustly estimates uncertainty under few examples constraints. By publishing AI-ready data, evaluation frameworks, and baseline results, we hope to see the Meta-MolNet suite become a comprehensive resource for the AI-assisted drug discovery community. Meta-MolNet is freely accessible at https://github.com/lol88/Meta-MolNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
小青椒应助科研通管家采纳,获得30
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
gxch完成签到,获得积分10
2秒前
今后应助scl采纳,获得10
2秒前
UAU发布了新的文献求助30
2秒前
3秒前
唐诗完成签到,获得积分20
3秒前
科研通AI5应助子淇采纳,获得10
3秒前
3秒前
小二郎应助阿琬采纳,获得10
4秒前
4秒前
Mostima发布了新的文献求助10
4秒前
4秒前
小菜花完成签到 ,获得积分10
5秒前
5秒前
共享精神应助Yan采纳,获得10
5秒前
6秒前
风铃草发布了新的文献求助10
6秒前
6秒前
Xijiao_Mu发布了新的文献求助10
7秒前
7秒前
7秒前
庞贝完成签到,获得积分10
7秒前
sissiarno完成签到,获得积分0
7秒前
7秒前
chemj完成签到,获得积分20
8秒前
科研通AI6应助麦子采纳,获得10
8秒前
荔枝酱果冻关注了科研通微信公众号
8秒前
ZMH发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701