Transformer-based time-to-event prediction for chronic kidney disease deterioration

计算机科学 肾脏疾病 电子健康档案 人工智能 变压器 机器学习 接收机工作特性 事件(粒子物理) 数据挖掘 鼻窦CT 医学 内科学 医疗保健 工程类 物理 量子力学 语言学 哲学 术语 电压 电气工程 经济 经济增长
作者
Moshe Zisser,Dvir Aran
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (4): 980-990 被引量:2
标识
DOI:10.1093/jamia/ocae025
摘要

Abstract Objective Deep-learning techniques, particularly the Transformer model, have shown great potential in enhancing the prediction performance of longitudinal health records. Previous methods focused on fixed-time risk prediction, however, time-to-event prediction is often more appropriate for clinical scenarios. Here, we present STRAFE, a generalizable survival analysis Transformer-based architecture for electronic health records. Materials and Methods The input for STRAFE is a sequence of visits with SNOMED-CT codes in OMOP-CDM format. A Transformer-based architecture was developed to calculate probabilities of the occurrence of the event in each of 48 months. Performance was evaluated using a real-world claims dataset of over 130 000 individuals with stage 3 chronic kidney disease (CKD). Results STRAFE showed improved mean absolute error (MAE) compared to other time-to-event algorithms in predicting the time to deterioration to stage 5 CKD. Additionally, STRAFE showed an improved area under the receiver operating curve compared to binary outcome algorithms. We show that STRAFE predictions can improve the positive predictive value of high-risk patients by 3-fold. Finally, we suggest a novel visualization approach to predictions on a per-patient basis. Discussion Time-to-event predictions are the most appropriate approach for clinical predictions. Our deep-learning algorithm outperformed not only other time-to-event prediction algorithms but also fixed-time algorithms, possibly due to its ability to train on censored data. We demonstrated possible clinical usage by identifying the highest-risk patients. Conclusions The ability to accurately identify patients at high risk and prioritize their needs can result in improved health outcomes, reduced costs, and more efficient use of resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wnll发布了新的文献求助10
1秒前
iii完成签到,获得积分10
2秒前
hy完成签到,获得积分10
2秒前
jenningseastera应助影子采纳,获得10
2秒前
LLLL发布了新的文献求助100
3秒前
小骆完成签到,获得积分10
3秒前
悦耳代云发布了新的文献求助10
3秒前
4秒前
善良的剑通发布了新的文献求助1000
5秒前
6秒前
田田田完成签到,获得积分10
6秒前
lxy完成签到,获得积分20
9秒前
9秒前
一一应助坦率含双采纳,获得10
9秒前
10秒前
10秒前
香潘潘的楠瓜完成签到,获得积分10
10秒前
aabsd完成签到,获得积分10
10秒前
小圆鸡汁完成签到,获得积分10
10秒前
绿麦盲区完成签到 ,获得积分10
10秒前
RIchard完成签到,获得积分20
11秒前
13秒前
小二郎应助务实的犀牛采纳,获得10
14秒前
汉堡包应助朝朝暮暮采纳,获得10
14秒前
14秒前
Xorgan发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
cdercder应助科研通管家采纳,获得10
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研助手6应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
gxmu6322发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435