Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction

计算机科学 动能 物理 量子力学
作者
Junlin Dong,Shiyu Wang,Wenqiang Cui,Xiaolin Sun,Haojie Guo,Hailu Yan,Horst Vogel,Zhi Wang,Shuguang Yuan
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (11): 4499-4513 被引量:1
标识
DOI:10.1021/acs.jctc.3c01412
摘要

Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s–1) is in close agreement with surface plasmon resonance experiments (0.12 s–1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
JrPaleo101完成签到,获得积分10
2秒前
小蘑菇应助帅气的短靴采纳,获得30
2秒前
NexusExplorer应助王wangxuanting采纳,获得10
3秒前
4秒前
麦兜不卖兜完成签到,获得积分10
4秒前
千千千千千千青完成签到,获得积分10
6秒前
8秒前
hydrogen完成签到,获得积分10
8秒前
8秒前
王wangxuanting完成签到,获得积分10
10秒前
澎鱼盐完成签到,获得积分10
11秒前
12秒前
Deng发布了新的文献求助10
13秒前
Han发布了新的文献求助10
13秒前
Monica关注了科研通微信公众号
13秒前
秉生天地完成签到 ,获得积分10
13秒前
16秒前
安详问晴完成签到,获得积分10
18秒前
19秒前
20秒前
安详问晴发布了新的文献求助10
21秒前
LOYAL发布了新的文献求助10
21秒前
22秒前
23秒前
xixi完成签到 ,获得积分20
23秒前
在水一方应助整齐千柳采纳,获得10
23秒前
大个应助迷人的山柳采纳,获得10
23秒前
26秒前
小河青青完成签到,获得积分20
26秒前
打打应助老叶采纳,获得10
26秒前
香蕉觅云应助欣慰的以云采纳,获得10
27秒前
传奇3应助黄SL采纳,获得10
27秒前
Monica发布了新的文献求助10
27秒前
昌班发布了新的文献求助10
28秒前
Jinyang完成签到 ,获得积分10
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
Deng完成签到,获得积分10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131087
求助须知:如何正确求助?哪些是违规求助? 4333112
关于积分的说明 13499238
捐赠科研通 4169825
什么是DOI,文献DOI怎么找? 2285943
邀请新用户注册赠送积分活动 1286868
关于科研通互助平台的介绍 1227780