Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction

计算机科学 动能 物理 量子力学
作者
Junlin Dong,Shiyu Wang,Wenqiang Cui,Xiaolin Sun,Haojie Guo,Hailu Yan,Horst Vogel,Zhi Wang,Shuguang Yuan
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (11): 4499-4513
标识
DOI:10.1021/acs.jctc.3c01412
摘要

Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s–1) is in close agreement with surface plasmon resonance experiments (0.12 s–1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Arya发布了新的文献求助10
1秒前
大乐发布了新的文献求助10
1秒前
3秒前
4秒前
5秒前
狗十七发布了新的文献求助10
6秒前
脑洞疼应助中旬日采纳,获得10
6秒前
科研通AI5应助开朗的觅山采纳,获得30
6秒前
艺二叁完成签到,获得积分10
6秒前
小蘑菇应助南北采纳,获得10
6秒前
生动访彤完成签到,获得积分20
7秒前
7秒前
8秒前
Arya完成签到,获得积分10
9秒前
9秒前
RoyChen发布了新的文献求助10
9秒前
饿得咕咕地完成签到,获得积分10
10秒前
10秒前
bkagyin应助为什么不能免费采纳,获得10
10秒前
黎星完成签到,获得积分10
10秒前
YaoHui给YaoHui的求助进行了留言
11秒前
大大彬发布了新的文献求助30
11秒前
endmarki完成签到,获得积分10
12秒前
生动访彤发布了新的文献求助10
13秒前
无奈鞋子发布了新的文献求助30
13秒前
13秒前
tangying8642发布了新的文献求助10
13秒前
小蒲完成签到 ,获得积分10
14秒前
14秒前
桐桐应助MOON采纳,获得10
14秒前
冰魂应助科研通管家采纳,获得20
15秒前
无花果应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818315
求助须知:如何正确求助?哪些是违规求助? 3361444
关于积分的说明 10412885
捐赠科研通 3079695
什么是DOI,文献DOI怎么找? 1691656
邀请新用户注册赠送积分活动 814517
科研通“疑难数据库(出版商)”最低求助积分说明 768189