DDoS attack detection and mitigation using deep neural network in SDN environment

服务拒绝攻击 计算机科学 应用层DDoS攻击 人工神经网络 人工智能 万维网 互联网
作者
Vanlalruata Hnamte,Ashfaq Ahmad Najar,Hong-Nhung Nguyen,Jamal Hussain,S. Manohar Naik
出处
期刊:Computers & Security [Elsevier BV]
卷期号:138: 103661-103661 被引量:34
标识
DOI:10.1016/j.cose.2023.103661
摘要

In the contemporary digital landscape, the escalating threat landscape of cyber attacks, particularly distributed denial-of-service (DDoS) attacks, has become a paramount concern for network security. This research introduces an innovative approach to DDoS detection leveraging a deep neural network (DNN) architecture rooted in deep learning (DL) principles. The proposed model exhibits a scalable and adaptable framework, enabling meticulous analysis of network traffic data to discern intricate patterns indicative of DDoS attacks. To validate the efficacy of our methodology, rigorous evaluations were conducted using authentic real-world traffic data. The results unequivocally establish the superiority of our DNN-based approach over traditional DDoS detection techniques. This research holds significant promise for bolstering network security, particularly within the dynamic landscape of software-defined network (SDN) environments. The study's findings contribute to the continual refinement and eventual deployment of advanced measures in fortifying digital infrastructure against the evolving threat landscape. Performance metrics, including detection accuracy and loss rates, further emphasize the effectiveness of our approach across different datasets. With detection accuracy rates of 99.98%, 100%, and 99.99% for the InSDN, CICIDS2018, and Kaggle DDoS datasets, respectively, coupled with low loss rates, our DNN-based model demonstrates robust capabilities in mitigating contemporary DDoS threats. This study not only presents a novel DDoS detection approach within SDN infrastructures but also offers insights into practical implications and challenges associated with deploying DNNs in real-world SDN environments. Network security professionals can benefit from the nuanced perspectives provided, contributing to the ongoing discourse on fortifying digital networks against evolving cyber threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十八子完成签到,获得积分10
刚刚
2秒前
华仔应助Elige采纳,获得10
3秒前
立躺顶真完成签到,获得积分10
4秒前
iperper完成签到,获得积分10
5秒前
orixero应助Backto1998采纳,获得10
5秒前
liushiyi完成签到,获得积分10
5秒前
香蕉觅云应助虚拟的惜筠采纳,获得10
6秒前
Jasper应助九点一定起采纳,获得10
6秒前
7秒前
7秒前
10秒前
11秒前
111发布了新的文献求助10
12秒前
12秒前
小高同学发布了新的文献求助10
12秒前
今后应助YGTRECE采纳,获得10
13秒前
14秒前
虾米吃螃蟹完成签到,获得积分10
15秒前
Lucas应助小高同学采纳,获得10
15秒前
这橘不甜发布了新的文献求助30
15秒前
17秒前
DD47发布了新的文献求助20
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
zmnzmnzmn应助科研通管家采纳,获得10
17秒前
哭泣灯泡完成签到,获得积分10
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得30
18秒前
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得30
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339