A review of recent developments and applications of high‐permittivity dielectric shimming in magnetic resonance

钛酸钡 电介质 介电常数 材料科学 计算机科学 磁共振成像 神经影像学 电磁线圈 射频线圈 介电常数 核磁共振 医学物理学 光电子学 物理 医学 电气工程 放射科 工程类 精神科
作者
Paul Jacobs,Wyger M. Brink,Ravinder Reddy
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:37 (4) 被引量:1
标识
DOI:10.1002/nbm.5094
摘要

We present a review outlining the basic mechanism, background, recent technical developments, and clinical applications of aqueous dielectric padding in the field of MRI. Originally meant to be a temporary solution, it has gained traction as an effective method for correcting B 1 + inhomogeneities due to the unique properties of the calcium titanate and barium titanate perovskites used. Aqueous dielectric pads have used a variety of high‐permittivity materials over the years to improve the quality of MRI acquisitions at 1.5 and 3 T and more recently for 7 T neuroimaging applications. The technical development and assessment of these pads have been advanced by an increased use of mathematical modeling and electromagnetic simulations. These tools have allowed for a more complete understanding of the physical interactions between dielectric pads and the RF coil, making testing and safety assessments more accurate. The ease of use and effectiveness that dielectric pads offer have allowed them to become more commonplace in tackling imaging challenges in more clinically focused environments. More recently, they have seen usage not only in anatomical imaging methods but also in specialized metabolic imaging sequences such as GluCEST and NOE MTR . New colossally high‐permittivity materials have been proposed; however, practical utilization has been a continued challenge due to unfavorable frequency dependences as well as safety limitations. A new class of metasurfaces has been under development to address the shortcomings of conventional dielectric padding while also providing increased performance in enhancing MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关天木发布了新的文献求助10
2秒前
mrrrlu发布了新的文献求助10
5秒前
maodianandme发布了新的文献求助10
7秒前
8秒前
在水一方应助东溟渔夫采纳,获得10
8秒前
愤怒的鲨鱼关注了科研通微信公众号
10秒前
脑洞疼应助星夜采纳,获得10
10秒前
13秒前
YY发布了新的文献求助10
14秒前
连安阳完成签到,获得积分10
17秒前
科研通AI5应助稀饭采纳,获得10
18秒前
dennisysz发布了新的文献求助10
18秒前
cdercder应助amengptsd采纳,获得10
19秒前
zhiyu发布了新的文献求助10
20秒前
星辰大海应助瘦瘦冰枫采纳,获得10
24秒前
apollo3232完成签到 ,获得积分10
24秒前
YY完成签到,获得积分10
26秒前
华仔应助两味愚采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
30秒前
33秒前
36秒前
科研通AI5应助LHL采纳,获得10
37秒前
小周关注了科研通微信公众号
38秒前
38秒前
jgqysu发布了新的文献求助10
40秒前
陆陶缘完成签到 ,获得积分10
40秒前
40秒前
40秒前
科研通AI5应助思敏采纳,获得10
41秒前
现代的冰珍完成签到,获得积分10
43秒前
ttttt完成签到,获得积分20
43秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133