CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement

计算机科学 分割 人工智能 计算机视觉 图像分割 卷积神经网络 像素 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiaodong Fan,Jing Zhou,Xiaoli Jiang,Meizhuo Xin,Limin Hou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108265-108265 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108265
摘要

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xl完成签到,获得积分10
刚刚
九儿完成签到 ,获得积分10
1秒前
tao完成签到 ,获得积分10
2秒前
2秒前
Akim应助修梨采纳,获得10
2秒前
盛夏完成签到,获得积分10
3秒前
阿乐完成签到,获得积分10
3秒前
虞无声完成签到,获得积分20
4秒前
初亦非完成签到,获得积分10
4秒前
千桑客完成签到,获得积分10
5秒前
荷叶塘塘主完成签到,获得积分20
5秒前
5秒前
感性的安露完成签到,获得积分10
6秒前
画风湖湘卷完成签到,获得积分10
6秒前
兮以城空完成签到,获得积分10
6秒前
冷艳的凡阳完成签到,获得积分10
7秒前
FashionBoy应助何晓俊采纳,获得10
7秒前
7秒前
忧郁的元绿完成签到,获得积分10
9秒前
焱阳发布了新的文献求助10
9秒前
活力大厦B完成签到,获得积分10
9秒前
9秒前
能干的小刺猬完成签到,获得积分10
10秒前
geold完成签到,获得积分10
10秒前
LVVVB完成签到,获得积分10
10秒前
HHH关注了科研通微信公众号
11秒前
清风醉完成签到,获得积分10
13秒前
修梨完成签到,获得积分20
13秒前
14秒前
科研通AI2S应助yu采纳,获得10
14秒前
科研完成签到,获得积分10
14秒前
mgr完成签到,获得积分10
16秒前
如意的问枫完成签到 ,获得积分10
16秒前
lzc完成签到 ,获得积分10
17秒前
CipherSage应助tianqing采纳,获得10
17秒前
内向的青荷完成签到,获得积分10
18秒前
双丁宝贝应助Ling采纳,获得10
18秒前
何晓俊发布了新的文献求助10
19秒前
慕青应助yu采纳,获得10
19秒前
公西傲蕾完成签到,获得积分10
20秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052685
求助须知:如何正确求助?哪些是违规求助? 2709958
关于积分的说明 7418667
捐赠科研通 2354578
什么是DOI,文献DOI怎么找? 1246164
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595925