CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement

计算机科学 分割 人工智能 计算机视觉 图像分割 卷积神经网络 像素 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiaodong Fan,Jing Zhou,Xiaoli Jiang,Meizhuo Xin,Limin Hou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108265-108265 被引量:31
标识
DOI:10.1016/j.compbiomed.2024.108265
摘要

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
涔雨发布了新的文献求助10
刚刚
浮游应助Eureka采纳,获得10
1秒前
橘子发布了新的文献求助10
1秒前
1秒前
深情安青应助阳阳采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
LIUYC完成签到,获得积分10
4秒前
科研大佬完成签到,获得积分10
4秒前
和谐的鹤轩完成签到 ,获得积分10
4秒前
ray发布了新的文献求助10
4秒前
5秒前
DMA50完成签到 ,获得积分10
5秒前
欣喜莫茗完成签到 ,获得积分10
5秒前
香蕉觅云应助健康采纳,获得10
5秒前
6秒前
myq发布了新的文献求助10
6秒前
6秒前
杨某人完成签到,获得积分10
6秒前
愤怒的乐瑶完成签到,获得积分10
6秒前
7秒前
木木木完成签到,获得积分10
7秒前
7秒前
7秒前
读研好难发布了新的文献求助10
7秒前
8秒前
Kathraine发布了新的文献求助10
8秒前
楠木木完成签到 ,获得积分10
8秒前
liuliuliu完成签到,获得积分10
8秒前
9秒前
yuanshenqidong完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
wxt发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357