CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement

计算机科学 分割 人工智能 计算机视觉 图像分割 卷积神经网络 像素 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiaodong Fan,Jing Zhou,Xiaoli Jiang,Meizhuo Xin,Limin Hou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108265-108265 被引量:14
标识
DOI:10.1016/j.compbiomed.2024.108265
摘要

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有益发布了新的文献求助10
1秒前
xibei完成签到 ,获得积分10
1秒前
2秒前
丘比特应助爱吃肉的猪采纳,获得10
2秒前
2秒前
2秒前
dyh6802发布了新的文献求助10
2秒前
3秒前
Wxx完成签到 ,获得积分10
3秒前
七栀完成签到,获得积分10
3秒前
科研通AI2S应助阿芙乐尔采纳,获得10
5秒前
一条贤与完成签到,获得积分20
5秒前
6秒前
6秒前
yl完成签到,获得积分10
6秒前
泊声完成签到,获得积分20
7秒前
su发布了新的文献求助10
7秒前
Island发布了新的文献求助10
7秒前
科研小民工应助一枪入魂采纳,获得30
7秒前
8秒前
8秒前
科研通AI2S应助gwh采纳,获得10
9秒前
9秒前
9秒前
9秒前
隐形曼青应助zhihan采纳,获得10
11秒前
11秒前
xylxyl完成签到,获得积分10
11秒前
12秒前
ZBN完成签到,获得积分10
12秒前
222关闭了222文献求助
13秒前
chinh完成签到,获得积分10
13秒前
钮祜禄废废完成签到,获得积分10
13秒前
13秒前
曾经富完成签到,获得积分10
15秒前
酷酷海豚完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794