CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement

计算机科学 分割 人工智能 计算机视觉 图像分割 卷积神经网络 像素 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiaodong Fan,Jing Zhou,Xiaoli Jiang,Meizhuo Xin,Limin Hou
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108265-108265 被引量:17
标识
DOI:10.1016/j.compbiomed.2024.108265
摘要

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翠翠发布了新的文献求助10
2秒前
童道之完成签到 ,获得积分10
3秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
7秒前
大力的契完成签到,获得积分10
10秒前
翠翠完成签到,获得积分10
12秒前
13秒前
曾经小伙完成签到 ,获得积分10
14秒前
朴素若枫完成签到,获得积分10
16秒前
17秒前
顾绍飞发布了新的文献求助30
19秒前
19秒前
20秒前
大地上的鱼完成签到,获得积分10
21秒前
21秒前
热情思天发布了新的文献求助10
22秒前
ZhonghanWen发布了新的文献求助10
24秒前
25秒前
过时的电灯胆完成签到 ,获得积分10
26秒前
酷波er应助amerla采纳,获得10
27秒前
宾周发布了新的文献求助30
27秒前
俄而完成签到 ,获得积分10
28秒前
绿色催化完成签到,获得积分10
29秒前
30秒前
飘逸妙柏发布了新的文献求助10
30秒前
文艺的小海豚完成签到,获得积分10
31秒前
晚风完成签到 ,获得积分10
33秒前
可爱的函函应助ZhonghanWen采纳,获得10
33秒前
闻元杰完成签到,获得积分10
34秒前
顾绍飞完成签到,获得积分20
34秒前
ZZZ完成签到,获得积分10
34秒前
35秒前
李健的小迷弟应助糊涂采纳,获得10
35秒前
gy发布了新的文献求助10
38秒前
飘逸妙柏完成签到,获得积分10
42秒前
liyi2022完成签到,获得积分10
43秒前
小周完成签到 ,获得积分10
43秒前
45秒前
星火完成签到,获得积分10
46秒前
49秒前
所所应助科研通管家采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751