A hybrid filter-wrapper feature selection using Fuzzy KNN based on Bonferroni mean for medical datasets classification: A COVID-19 case study

特征选择 计算机科学 人工智能 滤波器(信号处理) 模糊逻辑 数据挖掘 渡线 模式识别(心理学) 机器学习 数学 计算机视觉
作者
Amukta Malyada Vommi,B. T. Krishna
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:218: 119612-119612 被引量:28
标识
DOI:10.1016/j.eswa.2023.119612
摘要

Several feature selection methods have been developed to extract the optimal features from a dataset in medical datasets classification. Creating an efficient technique has become a challenge because of the high dimensions, noise, and redundant information. In this paper, we propose a hybrid filter-wrapper approach for feature selection. An ensemble of filter methods, ReliefF and Fuzzy Entropy (RFE) is developed, and the union of top-n features from each method are considered. The Equilibrium Optimizer (EO) technique is combined with Opposition Based Learning (OBL), Cauchy Mutation operator and a novel search strategy to enhance its capabilities. The OBL strategy improves the diversity of the population in the search space. The Cauchy Mutation operator enhances its ability to evade the local optima during the search, and the novel search strategy improves the exploration capability of the algorithm. This enhanced form of EO is integrated with eight time-varying S and V-shaped transfer functions to convert the solutions into binary form, Binary Enhanced Equilibrium Optimizer (BEE). The features from the ensemble are given as input to the Binary Enhanced Equilibrium Optimizer to extract the essential features. Fuzzy KNN based on Bonferroni mean is used as the learning algorithm. Twenty-two benchmark datasets and four microarray datasets are used to test the algorithm’s efficiency. This method is also applied to a COVID-19 case study. The results demonstrate the superiority of the proposed approach, RFE-BEE, among other methods in terms of fitness values, accuracy, precision, sensitivity, and F-measure, among several other state-of-the-art algorithms. RFE-BEE can be applied to various biomedical, computer vision and engineering applications such as electromyography pattern recognition, COVID-19 diagnosis, face recognition and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
唐焱杰完成签到,获得积分10
4秒前
6秒前
勤恳如凡完成签到 ,获得积分10
7秒前
热心市民小红花应助Cassie采纳,获得30
8秒前
FashionBoy应助Tang采纳,获得10
9秒前
9秒前
13秒前
zcx完成签到,获得积分10
13秒前
14秒前
16秒前
Tang完成签到,获得积分10
19秒前
19秒前
19秒前
Hello应助hhh采纳,获得10
21秒前
22秒前
Tang发布了新的文献求助10
23秒前
wang完成签到,获得积分10
25秒前
爆米花应助霸气的海露采纳,获得10
26秒前
煲煲煲仔饭完成签到 ,获得积分10
27秒前
zjt18应助Bryan采纳,获得20
29秒前
msl2023发布了新的文献求助10
30秒前
爆米花应助仁爱的凌雪采纳,获得10
31秒前
多年以后完成签到,获得积分10
34秒前
36秒前
38秒前
38秒前
小二郎应助科研通管家采纳,获得10
38秒前
orixero应助科研通管家采纳,获得10
38秒前
yydragen应助科研通管家采纳,获得10
38秒前
shidewu完成签到,获得积分10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
赘婿应助科研通管家采纳,获得10
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
wanci应助Bear采纳,获得10
38秒前
39秒前
39秒前
39秒前
专注的小蘑菇完成签到,获得积分10
41秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509712
关于积分的说明 11148589
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792104
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808