Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression

支持向量机 大洪水 归一化差异植被指数 地形湿度指数 遥感 合成孔径雷达 数据挖掘 算法 计算机科学 土地覆盖 均方误差 机器学习 人工智能 数学 数字高程模型 地理 统计 地质学 土地利用 工程类 海洋学 土木工程 气候变化 考古
作者
Soroosh Mehravar,Seyed Vahid Razavi-Termeh,Armin Moghimi,Babak Ranjgar,Fatemeh Foroughnia,Meisam Amani
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:617: 129100-129100 被引量:76
标识
DOI:10.1016/j.jhydrol.2023.129100
摘要

Flood has long been known as one of the most catastrophic natural hazards worldwide. Mapping flood-prone areas is an important part of flood disaster management. In this study, a flood susceptibility mapping framework was developed based on a novel integration of nature-inspired algorithms into support vector regression (SVR). To this end, various remote sensing (RS) and geographic information system (GIS) datasets were applied to the hybridized SVR models to map flood susceptibility in Ahwaz township, Iran. The proposed framework has two main steps: 1) updating the flood inventory (historical flooded locations) using the proposed RS-based flood detection method developed within the google earth engine (GEE) platform. The mosaicked images of multi-temporal Sentinel-1 synthetic aperture radar (SAR) data have been used in this step; 2) producing flood susceptibility map using the standalone SVR and hybridized model of SVR. The hybridized methods were derived from a novel integration of SVR with meta-heuristic algorithms, hence forming the SVR-bat algorithm (SVR-BA), SVR-invasive weed optimization (SVR-IWO), and SVR-firefly algorithm (SVR-FA). A spatial database of flood locations and 11 conditioning factors (altitude, slope angle, aspect, topographic wetness index, stream power index, normalized difference vegetation index (NDVI), distance to stream, curvature, rainfall, soil type, and land use/cover) were built for the susceptibility modelling. The accuracy of the proposed model was evaluated using the statistical and sensitivity indices, such as root mean square error (RMSE), receiver operating characteristic (ROC) and area under the ROC curve (AUROC) index. The results indicated that all hybridized models outperformed the standalone SVR. According to AUROC values, the predictive power of the SVR-FA was the highest with the value of 0.81, followed by SVR-IWO, SVR-BA, and SVR with values of 0.80, 0.79, and 0.77, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
24发布了新的文献求助10
刚刚
刚刚
明理的喵完成签到,获得积分10
1秒前
lianliyou发布了新的文献求助10
1秒前
科研通AI6应助人生如梦采纳,获得10
1秒前
Chenglx完成签到,获得积分10
1秒前
忧虑的大米完成签到,获得积分10
2秒前
标致的耷发布了新的文献求助10
2秒前
香草吧噗发布了新的文献求助10
2秒前
jiling完成签到,获得积分10
2秒前
LooYen发布了新的文献求助10
3秒前
浮游应助ZCcxsx采纳,获得10
3秒前
yujiaxin发布了新的文献求助10
4秒前
1kego发布了新的文献求助10
5秒前
大河细流完成签到,获得积分10
5秒前
6秒前
riceyellow完成签到,获得积分10
6秒前
6秒前
zzzwc发布了新的文献求助10
7秒前
kek完成签到,获得积分10
7秒前
24完成签到,获得积分10
10秒前
10秒前
明明发布了新的文献求助10
10秒前
11秒前
怅月千秋给怅月千秋的求助进行了留言
11秒前
冬菊完成签到 ,获得积分10
11秒前
18635986106完成签到,获得积分10
11秒前
李健应助小蓝人采纳,获得10
12秒前
潮来汐往完成签到,获得积分10
12秒前
owl777完成签到,获得积分20
13秒前
ZE发布了新的文献求助10
14秒前
15秒前
15秒前
yujiaxin完成签到,获得积分10
16秒前
Ting给Ting的求助进行了留言
16秒前
可爱的函函应助明明采纳,获得30
16秒前
古雨林完成签到,获得积分10
16秒前
17秒前
huntme完成签到,获得积分10
17秒前
17秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499682
求助须知:如何正确求助?哪些是违规求助? 4596445
关于积分的说明 14454640
捐赠科研通 4529637
什么是DOI,文献DOI怎么找? 2482120
邀请新用户注册赠送积分活动 1466084
关于科研通互助平台的介绍 1438891