A comprehensive survey on deep facial expression recognition: challenges, applications, and future guidelines

深度学习 计算机科学 可靠性 人工智能 GSM演进的增强数据速率 数据科学 面部表情 面部表情识别 边缘计算 人机交互 机器学习 面部识别系统 模式识别(心理学) 政治学 法学
作者
Muhammad Sajjad,Fath U Min Ullah,Mohib Ullah,Georgia Christodoulou,Faouzi Alaya Cheikh,Mohammad Hijji,Khan Muhammad,Joel J. P. C. Rodrigues
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:68: 817-840 被引量:17
标识
DOI:10.1016/j.aej.2023.01.017
摘要

Facial expression recognition (FER) is an emerging and multifaceted research topic. Applications of FER in healthcare, security, safe driving, and so forth have contributed to the credibility of these methods and their adoption in human-computer interaction for intelligent outcomes. Computational FER mimics human facial expression coding skills and conveys important cues that complement speech to assist listeners. Similarly, FER methods based on deep learning and artificial intelligence (AI) techniques have been developed with edge modules to ensure efficiency and real-time processing. To this end, numerous studies have explored different aspects of FER. Surveys of FER have focused on the literature on hand-crafted techniques, with a focus on general methods for local servers but largely neglecting edge vision-inspired deep learning and AI-based FER technologies. To consider these missing aspects, in this study, the existing literature on FER is thoroughly analyzed and surveyed, and the working flow of FER methods, their integral and intermediate steps, and pattern structures are highlighted. Further, the limitations in existing FER surveys are discussed. Next, FER datasets are investigated in depth, and the associated challenges and problems are discussed. In contrast to existing surveys, FER methods are considered for edge vision (on e.g., smartphone or Raspberry Pi, devices, etc.), and different measures to evaluate the performance of FER methods are comprehensively discussed. Finally, recommendations and some avenues for future research are suggested to facilitate further development and implementation of FER technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
刚刚
1秒前
x1981完成签到,获得积分10
2秒前
桑sang完成签到,获得积分10
2秒前
欣喜书桃发布了新的文献求助10
2秒前
2秒前
2秒前
WQ发布了新的文献求助20
3秒前
白玫瑰完成签到,获得积分10
3秒前
古果完成签到,获得积分10
3秒前
高源伯完成签到 ,获得积分10
3秒前
joy发布了新的文献求助10
3秒前
ahuang发布了新的文献求助10
3秒前
由由发布了新的文献求助10
3秒前
4秒前
迷你的隶完成签到,获得积分10
4秒前
科研小牛完成签到 ,获得积分10
4秒前
桐桐应助苏雅霏采纳,获得10
4秒前
4秒前
4秒前
沐沐完成签到,获得积分10
4秒前
kidult完成签到,获得积分10
5秒前
完美世界应助JYY采纳,获得10
6秒前
李昊泽发布了新的文献求助10
6秒前
Aoch完成签到,获得积分10
6秒前
三毛变相发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
carcar发布了新的文献求助10
8秒前
8秒前
风趣谷秋完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
慢慢发布了新的文献求助10
8秒前
9秒前
9秒前
kejun完成签到 ,获得积分10
9秒前
单复天发布了新的文献求助10
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871