清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Raman spectroscopy and machine learning for Candida auris identification and characterization

金念珠菌 氟康唑 鉴定(生物学) 病菌 毒力 生物 抗真菌 抗药性 微生物学 抗真菌药 计算生物学 遗传学 基因 生态学
作者
Jindong Xue,Huizhen Yue,Weilai Lu,Yanying Li,Guanghua Huang,Yu Fu
出处
期刊:Applied and Environmental Microbiology [American Society for Microbiology]
卷期号:90 (11)
标识
DOI:10.1128/aem.01025-24
摘要

ABSTRACT Candida auris, an emerging fungal pathogen characterized by multidrug resistance and high-mortality nosocomial infections, poses a serious global health threat. However, the precise and rapid identification and characterization of C. auris remain a challenge. Here, we employed Raman spectroscopy combined with machine learning to identify C. auris isolates and its closely related species as well as to predict antifungal resistance and key virulence factors at the single-cell level. The average accuracy of identification among all Candida species was 93.33%, with an accuracy of 98% for the clinically simulated samples. The drug susceptibility of C. auris to fluconazole and amphotericin B was 99% and 94%, respectively. Furthermore, the phenotypic prediction of C. auris yielded an accuracy of 100% for aggregating cells and 97% for filamentous cells. This proof-of-concept methodology not only precisely identifies C. auris at the clade-specific level but also rapidly predicts the antifungal resistance and biological characteristics, promising a valuable medical diagnostic tool to combat this multidrug-resistant pathogen in the future. IMPORTANCE Currently, combating Candida auris infections and transmission is challenging due to the lack of efficient identification and characterization methods for this species. To address these challenges, our study presents a novel approach that utilizes Raman spectroscopy and artificial intelligence to achieve precise identification and characterization of C. auris at the singe-cell level. It can accurately identify a single cell from the four C. auris clades. Additionally, we developed machine learning models designed to detect antifungal resistance in C. auris cells and differentiate between two distinct phenotypes based on the single-cell Raman spectrum. We also constructed prediction models for detecting aggregating and filamentous cells in C. auris , both of which are closely linked to its virulence. These results underscore the merits of Raman spectroscopy in the identification and characterization of C. auris , promising improved outcomes in the battle against C. auris infections and transmission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HTniconico完成签到 ,获得积分10
5秒前
36秒前
量子星尘发布了新的文献求助10
38秒前
Wen完成签到 ,获得积分0
43秒前
47秒前
50秒前
滕皓轩发布了新的文献求助30
57秒前
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
xiaowanzi完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分0
2分钟前
Wang完成签到 ,获得积分20
2分钟前
蓝意完成签到,获得积分0
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
猫的毛完成签到 ,获得积分10
2分钟前
大模型应助假装是博士采纳,获得10
2分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
2分钟前
alanbike完成签到,获得积分10
3分钟前
ww完成签到,获得积分10
3分钟前
望向天空的鱼完成签到 ,获得积分10
3分钟前
毕韬韬完成签到 ,获得积分10
3分钟前
3分钟前
Yulanda完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助30
3分钟前
114514完成签到 ,获得积分10
3分钟前
andre20完成签到 ,获得积分10
4分钟前
善善完成签到 ,获得积分10
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得30
4分钟前
4分钟前
Hiram完成签到,获得积分10
5分钟前
5分钟前
小小二发布了新的文献求助10
5分钟前
无心的天真完成签到 ,获得积分10
5分钟前
xdd完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
天真酒窝完成签到,获得积分10
5分钟前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236238
求助须知:如何正确求助?哪些是违规求助? 3769863
关于积分的说明 11840823
捐赠科研通 3426766
什么是DOI,文献DOI怎么找? 1880647
邀请新用户注册赠送积分活动 933232
科研通“疑难数据库(出版商)”最低求助积分说明 840117