已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of benign and malignant ground glass pulmonary nodules based on multi-feature fusion of attention mechanism

人工智能 深度学习 卷积神经网络 试验装置 特征(语言学) 医学 无线电技术 人工神经网络 计算机科学 放射科 模式识别(心理学) 内科学 哲学 语言学
作者
Heng Deng,Wenjun Huang,Xiuxiu Zhou,Taohu Zhou,Li Fan,Shiyuan Liu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1447132
摘要

Objectives The purpose of this study was to develop and validate a new feature fusion algorithm to improve the classification performance of benign and malignant ground-glass nodules (GGNs) based on deep learning. Methods We retrospectively collected 385 cases of GGNs confirmed by surgical pathology from three hospitals. We utilized 239 GGNs from Hospital 1 as the training and internal validation set, and 115 and 31 GGNs from Hospital 2 and Hospital 3, respectively, as external test sets 1 and 2. Among these GGNs, 172 were benign and 203 were malignant. First, we evaluated clinical and morphological features of GGNs at baseline chest CT and simultaneously extracted whole-lung radiomics features. Then, deep convolutional neural networks (CNNs) and backpropagation neural networks (BPNNs) were applied to extract deep features from whole-lung CT images, clinical, morphological features, and whole-lung radiomics features separately. Finally, we integrated these four types of deep features using an attention mechanism. Multiple metrics were employed to evaluate the predictive performance of the model. Results The deep learning model integrating clinical, morphological, radiomics and whole lung CT image features with attention mechanism (CMRI-AM) achieved the best performance, with area under the curve (AUC) values of 0.941 (95% CI: 0.898-0.972), 0.861 (95% CI: 0.823-0.882), and 0.906 (95% CI: 0.878-0.932) on the internal validation set, external test set 1, and external test set 2, respectively. The AUC differences between the CMRI-AM model and other feature combination models were statistically significant in all three groups (all p<0.05). Conclusion Our experimental results demonstrated that (1) applying attention mechanism to fuse whole-lung CT images, radiomics features, clinical, and morphological features is feasible, (2) clinical, morphological, and radiomics features provide supplementary information for the classification of benign and malignant GGNs based on CT images, and (3) utilizing baseline whole-lung CT features to predict the benign and malignant of GGNs is an effective method. Therefore, optimizing the fusion of baseline whole-lung CT features can effectively improve the classification performance of GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助50
1秒前
Z17应助chengmin采纳,获得10
2秒前
2秒前
js完成签到,获得积分10
5秒前
7秒前
今后应助飞翔采纳,获得10
8秒前
wwwww发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
Leo发布了新的文献求助10
12秒前
14秒前
科目三应助嘿嘿采纳,获得10
15秒前
专注寻菱发布了新的文献求助10
18秒前
闾丘翠桃发布了新的文献求助10
20秒前
冰棒比冰冰完成签到 ,获得积分10
22秒前
mmz完成签到 ,获得积分10
25秒前
25秒前
小孩015完成签到 ,获得积分10
26秒前
SNP1988完成签到 ,获得积分10
28秒前
29秒前
闾丘翠桃完成签到,获得积分10
30秒前
哈哈发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
35秒前
38秒前
一丁雨发布了新的文献求助10
42秒前
bc应助凝凝采纳,获得10
43秒前
44秒前
48秒前
酷炫的幻丝完成签到 ,获得积分10
48秒前
自然秋柳发布了新的文献求助10
48秒前
丘比特应助chy采纳,获得10
52秒前
53秒前
53秒前
Leo完成签到,获得积分10
54秒前
Hello应助等待寄云采纳,获得10
56秒前
58秒前
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862251
求助须知:如何正确求助?哪些是违规求助? 3404782
关于积分的说明 10641293
捐赠科研通 3128016
什么是DOI,文献DOI怎么找? 1725013
邀请新用户注册赠送积分活动 830762
科研通“疑难数据库(出版商)”最低求助积分说明 779429