Langevin Dynamics Based Algorithm e-THεO POULA for Stochastic Optimization Problems with Discontinuous Stochastic Gradient

朗之万动力 数学 动力学(音乐) 随机优化 算法 数学优化 应用数学 统计 声学 物理
作者
Dong‐Young Lim,Ariel Neufeld,Sotirios Sabanis,Ying Zhang
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/moor.2022.0307
摘要

We introduce a new Langevin dynamics based algorithm, called the extended tamed hybrid ε-order polygonal unadjusted Langevin algorithm (e-THεO POULA), to solve optimization problems with discontinuous stochastic gradients, which naturally appear in real-world applications such as quantile estimation, vector quantization, conditional value at risk (CVaR) minimization, and regularized optimization problems involving rectified linear unit (ReLU) neural networks. We demonstrate both theoretically and numerically the applicability of the e-THεO POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish nonasymptotic error bounds for e-THεO POULA in Wasserstein distances and provide a nonasymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multiperiod portfolio optimization, transfer learning in multiperiod portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world data sets illustrate the superior empirical performance of e-THεO POULA compared with SGLD (stochastic gradient Langevin dynamics), TUSLA (tamed unadjusted stochastic Langevin algorithm), adaptive moment estimation, and Adaptive Moment Estimation with a Strongly Non-Convex Decaying Learning Rate in terms of model accuracy. Funding: Financial support was provided by the Alan Turing Institute, London, under the Engineering and Physical Sciences Research Council [Grant EP/N510129/1]; the Ministry of Education of Singapore Academic Research Fund [Tier 2 Grant MOE-T2EP20222-0013]; the European Union’s Horizon 2020 Research and Innovation Programme [Marie Skłodowska-Curie Grant Agreement 801215]; the University of Edinburgh’s Data-Driven Innovation Programme, part of the Edinburgh and South East Scotland City Region Deal; an Institute of Information and Communications Technology Planning and Evaluation grant funded by the Korean Ministry of Science and ICT (MIST) [Grant 2020-0-01336]; the Artificial Intelligence Graduate School Program of the Ulsan National Institute of Science and Technology; a National Research Foundation of Korea grant funded by the Korean government (MSIT) [Grant RS-2023-00253002]; and the Guangzhou–Hong Kong University of Science and Technology (Guangzhou) Joint Funding Program [Grant 2024A03J0630].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CipherSage应助情红锐采纳,获得10
1秒前
无花果应助wg采纳,获得10
1秒前
yr关闭了yr文献求助
3秒前
4秒前
细心的败关注了科研通微信公众号
5秒前
zhenzheng完成签到 ,获得积分0
5秒前
yusheng完成签到,获得积分10
5秒前
LTJ发布了新的文献求助10
6秒前
SIDEsss发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
CipherSage应助HopeStar采纳,获得10
8秒前
哈哈哈完成签到 ,获得积分10
8秒前
科研通AI5应助gaomingquan采纳,获得10
9秒前
10秒前
11秒前
大模型应助nenenn采纳,获得10
11秒前
qwe发布了新的文献求助10
12秒前
12秒前
祝妹发布了新的文献求助10
12秒前
可爱的函函应助mew桑采纳,获得20
13秒前
情怀应助一只羊采纳,获得10
13秒前
为神指路发布了新的文献求助10
16秒前
17秒前
研友_ana发布了新的文献求助10
17秒前
犹豫晓啸发布了新的文献求助10
17秒前
Hansiii发布了新的文献求助10
18秒前
20秒前
爱幻想的青柠完成签到,获得积分10
20秒前
22秒前
yr发布了新的文献求助10
22秒前
23秒前
gaomingquan发布了新的文献求助10
23秒前
欣慰问凝完成签到 ,获得积分10
23秒前
25秒前
思源应助爱幻想的青柠采纳,获得10
25秒前
xie发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4356259
求助须知:如何正确求助?哪些是违规求助? 3859427
关于积分的说明 12041140
捐赠科研通 3500972
什么是DOI,文献DOI怎么找? 1921358
邀请新用户注册赠送积分活动 963764
科研通“疑难数据库(出版商)”最低求助积分说明 863347