An Automatic Measurement Method of the Tibial Deformity Angle on X‐Ray Films Based on Deep Learning Keypoint Detection Network

计算机科学 人工智能 计算机视觉 畸形 深度学习 口腔正畸科 地质学 光学 物理 医学 放射科
作者
Ning Zhao,Cheng Chang,Yuanyuan Liu,Xiao Li,Zicheng Song,Yue Guo,Jianwen Chen,Hao Sun
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23190
摘要

ABSTRACT In the clinical application of the parallel external fixator, medical practitioners are required to quantify deformity parameters to develop corrective strategies. However, manual measurement of deformity angles is a complex and time‐consuming process that is susceptible to subjective factors, resulting in nonreproducible results. Accordingly, this study proposes an automatic measurement method based on deep learning, comprising three stages: tibial segment localization, tibial contour point detection, and deformity angle calculation. First, the Faster R‐CNN object detection model, combined with ResNet50 and FPN as the backbone, was employed to achieve accurate localization of tibial segments under both occluded and nonoccluded conditions. Subsequently, a relative position constraint loss function was added, and ResNet101 was used as the backbone, resulting in an improved RTMPose keypoint detection model that achieved precise detection of tibial contour points. Ultimately, the bone axes of each tibial segment were determined based on the coordinates of the contour points, and the deformity angles were calculated. The enhanced keypoint detection model, Con_RTMPose, elevated the Percentage of Correct Keypoints (PCK) from 63.94% of the initial model to 87.17%, markedly augmenting keypoint localization precision. Compared to manual measurements conducted by medical professionals, the proposed methodology demonstrates an average error of 0.52°, a maximum error of 1.15°, and a standard deviation of 0.07, thereby satisfying the requisite accuracy standards for orthopedic assessments. The measurement time is approximately 12 s, whereas manual measurement requires about 15 min, greatly reducing the time required. Additionally, the stability of the models was verified through K ‐fold cross‐validation experiments. The proposed method meets the accuracy requirements for orthopedic applications, provides objective and reproducible results, significantly reduces the workload of medical professionals, and greatly improves efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周粥发布了新的文献求助10
刚刚
2秒前
illusion完成签到,获得积分10
4秒前
7秒前
在水一方应助周粥采纳,获得10
7秒前
干净冰露发布了新的文献求助10
8秒前
11秒前
xx发布了新的文献求助10
13秒前
shi发布了新的文献求助10
13秒前
cxy完成签到,获得积分10
15秒前
16秒前
shuzhan完成签到,获得积分10
16秒前
16秒前
felix发布了新的文献求助10
16秒前
tovfix完成签到,获得积分10
17秒前
烟花应助liuyiduo采纳,获得10
17秒前
17秒前
xiaoxiao完成签到,获得积分10
19秒前
zz完成签到,获得积分20
19秒前
大脚完成签到,获得积分10
20秒前
Kuma发布了新的文献求助10
20秒前
shuzhan发布了新的文献求助10
20秒前
20秒前
小蚊子发布了新的文献求助10
21秒前
大脚发布了新的文献求助10
22秒前
小宋应助QWSS采纳,获得30
23秒前
23秒前
默默的甜瓜完成签到,获得积分10
23秒前
zz发布了新的文献求助10
23秒前
风清扬应助shi采纳,获得10
24秒前
24秒前
wanci应助xmf采纳,获得10
25秒前
27秒前
28秒前
落叶发布了新的文献求助10
28秒前
汉堡包应助xx采纳,获得10
28秒前
Zkxxxx发布了新的文献求助10
29秒前
金豆发布了新的文献求助10
29秒前
30秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906036
求助须知:如何正确求助?哪些是违规求助? 3451621
关于积分的说明 10865627
捐赠科研通 3176971
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791207