An Automatic Measurement Method of the Tibial Deformity Angle on X‐Ray Films Based on Deep Learning Keypoint Detection Network

计算机科学 人工智能 计算机视觉 畸形 深度学习 口腔正畸科 地质学 光学 物理 医学 放射科
作者
Ning Zhao,Cheng Chang,Yuanyuan Liu,Xiao Li,Zicheng Song,Yue Guo,Jianwen Chen,Hao Sun
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23190
摘要

ABSTRACT In the clinical application of the parallel external fixator, medical practitioners are required to quantify deformity parameters to develop corrective strategies. However, manual measurement of deformity angles is a complex and time‐consuming process that is susceptible to subjective factors, resulting in nonreproducible results. Accordingly, this study proposes an automatic measurement method based on deep learning, comprising three stages: tibial segment localization, tibial contour point detection, and deformity angle calculation. First, the Faster R‐CNN object detection model, combined with ResNet50 and FPN as the backbone, was employed to achieve accurate localization of tibial segments under both occluded and nonoccluded conditions. Subsequently, a relative position constraint loss function was added, and ResNet101 was used as the backbone, resulting in an improved RTMPose keypoint detection model that achieved precise detection of tibial contour points. Ultimately, the bone axes of each tibial segment were determined based on the coordinates of the contour points, and the deformity angles were calculated. The enhanced keypoint detection model, Con_RTMPose, elevated the Percentage of Correct Keypoints (PCK) from 63.94% of the initial model to 87.17%, markedly augmenting keypoint localization precision. Compared to manual measurements conducted by medical professionals, the proposed methodology demonstrates an average error of 0.52°, a maximum error of 1.15°, and a standard deviation of 0.07, thereby satisfying the requisite accuracy standards for orthopedic assessments. The measurement time is approximately 12 s, whereas manual measurement requires about 15 min, greatly reducing the time required. Additionally, the stability of the models was verified through K ‐fold cross‐validation experiments. The proposed method meets the accuracy requirements for orthopedic applications, provides objective and reproducible results, significantly reduces the workload of medical professionals, and greatly improves efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无花果应助滕州笑采纳,获得10
3秒前
無期完成签到 ,获得积分10
4秒前
4秒前
zrs发布了新的文献求助30
6秒前
6秒前
6秒前
雪宝宝完成签到,获得积分10
7秒前
ZW发布了新的文献求助10
8秒前
勤恳冷雪发布了新的文献求助10
8秒前
lianqing完成签到,获得积分10
10秒前
11秒前
12秒前
15秒前
15秒前
16秒前
岁月荣耀发布了新的文献求助10
19秒前
觅云完成签到 ,获得积分10
20秒前
晶猪噜噜发布了新的文献求助10
21秒前
勤恳的向日葵完成签到,获得积分10
24秒前
jor666完成签到,获得积分10
24秒前
25秒前
TRY完成签到,获得积分10
25秒前
29秒前
29秒前
晶猪噜噜完成签到,获得积分10
34秒前
36秒前
37秒前
38秒前
ShellyHan发布了新的文献求助10
39秒前
欢呼煎蛋发布了新的文献求助30
40秒前
zeno123456完成签到,获得积分10
42秒前
冠心没有病完成签到,获得积分10
43秒前
科研通AI5应助开朗寇采纳,获得10
43秒前
极少发生的重复性发作完成签到,获得积分10
43秒前
kk发布了新的文献求助10
44秒前
chrysan发布了新的文献求助10
46秒前
yoimiya完成签到,获得积分10
51秒前
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315