Target Detection Method of UAV Aerial Imagery Based on Improved YOLOv5

计算机科学 人工智能 棱锥(几何) 计算机视觉 帕斯卡(单位) 联营 残余物 特征提取 可视化 模式识别(心理学) 遥感 算法 数学 几何学 地质学 程序设计语言
作者
Xudong Luo,Yiquan Wu,Fei‐Yue Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (19): 5063-5063 被引量:56
标识
DOI:10.3390/rs14195063
摘要

Due to the advantages of small size, lightweight, and simple operation, the unmanned aerial vehicle (UAV) has been widely used, and it is also becoming increasingly convenient to capture high-resolution aerial images in a variety of environments. Existing target-detection methods for UAV aerial images lack outstanding performance in the face of challenges such as small targets, dense arrangement, sparse distribution, and a complex background. In response to the above problems, some improvements on the basis of YOLOv5l have been made by us. Specifically, three feature-extraction modules are proposed, using asymmetric convolutions. They are named the Asymmetric ResNet (ASResNet) module, Asymmetric Enhanced Feature Extraction (AEFE) module, and Asymmetric Res2Net (ASRes2Net) module, respectively. According to the respective characteristics of the above three modules, the residual blocks in different positions in the backbone of YOLOv5 were replaced accordingly. An Improved Efficient Channel Attention (IECA) module was added after Focus, and Group Spatial Pyramid Pooling (GSPP) was used to replace the Spatial Pyramid Pooling (SPP) module. In addition, the K-Means++ algorithm was used to obtain more accurate anchor boxes, and the new EIOU-NMS method was used to improve the postprocessing ability of the model. Finally, ablation experiments, comparative experiments, and visualization of results were performed on five datasets, namely CIFAR-10, PASCAL VOC, VEDAI, VisDrone 2019, and Forklift. The effectiveness of the improved strategies and the superiority of the proposed method (YOLO-UAV) were verified. Compared with YOLOv5l, the backbone of the proposed method increased the top-one accuracy of the classification task by 7.20% on the CIFAR-10 dataset. The mean average precision (mAP) of the proposed method on the four object-detection datasets was improved by 5.39%, 5.79%, 4.46%, and 8.90%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYJ发布了新的文献求助10
3秒前
4秒前
8秒前
9秒前
10秒前
11秒前
Wu完成签到 ,获得积分10
12秒前
Cloud发布了新的文献求助10
12秒前
ming完成签到,获得积分10
13秒前
13秒前
幸福大白发布了新的文献求助10
13秒前
虚幻的KC发布了新的文献求助20
14秒前
mao应助负责的方盒采纳,获得30
15秒前
莓莓崽完成签到 ,获得积分10
17秒前
KERWINKON发布了新的文献求助10
18秒前
小溪发布了新的文献求助10
19秒前
UUU完成签到 ,获得积分10
22秒前
22秒前
香蕉觅云应助秋子采纳,获得10
23秒前
FashionBoy应助CHY采纳,获得30
23秒前
23秒前
kaihua发布了新的文献求助10
27秒前
27秒前
KERWINKON完成签到,获得积分10
28秒前
mangguo发布了新的文献求助10
28秒前
Orange应助背后的书文采纳,获得10
32秒前
32秒前
33秒前
34秒前
34秒前
ZhangKeyan完成签到,获得积分10
34秒前
35秒前
丫丫完成签到,获得积分10
35秒前
丫丫发布了新的文献求助10
37秒前
SciGPT应助Curtain采纳,获得100
37秒前
kaihua完成签到,获得积分20
38秒前
ZhangKeyan发布了新的文献求助10
38秒前
幸福大白发布了新的文献求助10
38秒前
情怀应助可可采纳,获得10
39秒前
MingY发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776855
求助须知:如何正确求助?哪些是违规求助? 3322276
关于积分的说明 10209617
捐赠科研通 3037624
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976