Voronoi Natural Neighbours Tessellation: An interpolation and grid agnostic approach to forensic soil provenancing

沃罗诺图 插值(计算机图形学) 形心Voronoi细分 采样(信号处理) 网格 镶嵌(计算机图形学) 多元插值 计算机科学 数据挖掘 宾夕法尼亚语 空间分析 数学 统计 地质学 人工智能 计算机视觉 几何学 滤波器(信号处理) 计算机图形学(图像) 运动(物理) 双线性插值 构造盆地 古生物学
作者
Michael G. Aberle
出处
期刊:Forensic Chemistry [Elsevier]
卷期号:35: 100522-100522 被引量:1
标识
DOI:10.1016/j.forc.2023.100522
摘要

Recently there has been an increase of work dedicated to developing a more objective soil provenancing capability. Notwithstanding the significant progress made, the presented provenancing techniques have predominately been based upon interpolation grids, generated from often arbitrary decisions of the user (e.g., grid cell size, grid placement, interpolation model, etc.). To address the acknowledged reproducibility issues, this paper introduces a spatial modelling technique based upon Voronoi Tessellations that is free from arbitrary user decisions. Termed herein as Voronoi Natural Neighbours Tessellation (VNNT), the proposed approach segments the survey area into many “honeycomb-like” polygons. Of which, the exact number, shape, location, and orientation of polygons are inherently dependent upon the original density of input sampling points from the survey, not a user’s subjective decision. Utilising compositional geochemistry data from a fit-for-purpose topsoil survey and eleven “blind” soil samples from Canberra, Australia, we compare this proposed VNNT approach against a simpler Voronoi Tessellation, and a previously presented 500 m x 500 m grid following a modified and upscaled Natural Neighbour interpolation. Aside from also being computationally less intensive, our results indicated the proposed VNNT approach regularly yielded at least equal, or often more accurate provenance predictions than that of the gridded Natural Neighbour interpolation. Importantly, the delineation of individual polygons is fundamentally dependent upon the survey’s real sampling design, and most truthfully reflects the underlying sampling density, and associated uncertainties. Consequently, the VNNT approach is significantly less susceptible to expert bias as a result of subjective decision-making and “fine–tuning” of interpolation parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助HY采纳,获得10
刚刚
刚刚
刚刚
俭朴的跳跳糖完成签到 ,获得积分10
刚刚
追寻惜萱完成签到 ,获得积分10
1秒前
1秒前
安平完成签到,获得积分20
1秒前
1秒前
称心妙竹发布了新的文献求助10
1秒前
2秒前
田様应助大大怪采纳,获得10
2秒前
无花果应助Luoling采纳,获得10
3秒前
3秒前
4秒前
4秒前
hyxu678发布了新的文献求助10
5秒前
jawa完成签到 ,获得积分10
6秒前
lzh完成签到 ,获得积分10
6秒前
7秒前
古蓦然完成签到 ,获得积分10
7秒前
张天雨发布了新的文献求助10
7秒前
7秒前
洪茜茜发布了新的文献求助10
7秒前
7秒前
云泰迪发布了新的文献求助10
8秒前
xxi完成签到,获得积分10
8秒前
godslibrary应助wyt采纳,获得10
8秒前
8秒前
小心发布了新的文献求助10
9秒前
科研通AI6应助阔达的寒凝采纳,获得10
9秒前
9秒前
huihui完成签到 ,获得积分10
9秒前
idiom完成签到 ,获得积分10
9秒前
独特的香魔完成签到 ,获得积分10
10秒前
万能图书馆应助妮子采纳,获得10
11秒前
亮亮完成签到 ,获得积分10
11秒前
11秒前
11秒前
lucky完成签到 ,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058