Machine learning based hybrid anomaly detection technique for automatic diagnosis of cardiovascular diseases using cardiac sympathetic nerve activity and electrocardiogram

人工智能 模式识别(心理学) 计算机科学 异常检测 特征提取 阈值 聚类分析 支持向量机 判别式 离群值 图像(数学)
作者
Merve Begüm Terzı,Orhan Arıkan
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:69 (1): 79-109
标识
DOI:10.1515/bmt-2022-0406
摘要

Abstract Objectives Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs. Methods In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs. Results Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs. Conclusions The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians’ success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zpiao发布了新的文献求助10
1秒前
神帅酷哥完成签到,获得积分10
1秒前
1秒前
傲娇半山发布了新的文献求助10
1秒前
1秒前
Orange应助小豆芽采纳,获得10
2秒前
搜集达人应助哇咔咔采纳,获得10
3秒前
He关注了科研通微信公众号
5秒前
傲娇半山完成签到 ,获得积分20
5秒前
淡然的舞仙完成签到 ,获得积分10
6秒前
科研民工发布了新的文献求助10
6秒前
9秒前
kikilovestudying完成签到,获得积分10
9秒前
研友_VZG7GZ应助壮观的人龙采纳,获得10
10秒前
科研通AI5应助Zpiao采纳,获得10
11秒前
Zoe完成签到,获得积分10
11秒前
Aruo完成签到,获得积分10
13秒前
张云志发布了新的文献求助10
15秒前
冷静新烟发布了新的文献求助10
19秒前
橘安完成签到,获得积分20
20秒前
万能图书馆应助油柑美式采纳,获得10
20秒前
22秒前
newton发布了新的文献求助30
23秒前
领导范儿应助橘安采纳,获得10
23秒前
24秒前
26秒前
26秒前
哇咔咔发布了新的文献求助10
28秒前
顾矜应助乔谷雪采纳,获得10
28秒前
28秒前
29秒前
小马甲应助傲娇半山采纳,获得10
30秒前
31秒前
油柑美式发布了新的文献求助10
32秒前
32秒前
33秒前
biozhp完成签到,获得积分10
37秒前
Villanellel发布了新的文献求助10
38秒前
39秒前
40秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824335
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441882
捐赠科研通 3085931
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816425
科研通“疑难数据库(出版商)”最低求助积分说明 769640