Spatial–Temporal Attention Network for Depression Recognition from facial videos

计算机科学 人工智能 模式识别(心理学) 均方误差 空间分析 像素 特征(语言学) 数学 统计 语言学 哲学
作者
Yuchen Pan,Yuanyuan Shang,Tie Liu,Zhuhong Shao,Guodong Guo,Hui Ding,Qiang Hu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121410-121410 被引量:29
标识
DOI:10.1016/j.eswa.2023.121410
摘要

Recent studies focus on the utilization of deep learning approaches to recognize depression from facial videos. However, these approaches have been hindered by their limited performance, which can be attributed to the inadequate consideration of global spatial–temporal relationships in significant local regions within faces. In this paper, we propose Spatial–Temporal Attention Depression Recognition Network (STA-DRN) for depression recognition to enhance feature extraction and increase the relevance of depression recognition by capturing the global and local spatial–temporal information. Our proposed approach includes a novel Spatial–Temporal Attention (STA) mechanism, which generates spatial and temporal attention vectors to capture the global and local spatial–temporal relationships of features. To the best of our knowledge, this is the first attempt to incorporate pixel-wise STA mechanisms for depression recognition based on 3D video analysis. Additionally, we propose an attention vector-wise fusion strategy in the STA module, which combines information from both spatial and temporal domains. We then design the STA-DRN by stacking STA modules ResNet-style. The experimental results on AVEC 2013 and AVEC 2014 show that our method achieves competitive performance, with mean absolute error/root mean square error (MAE/RMSE) scores of 6.15/7.98 and 6.00/7.75, respectively. Moreover, visualization analysis demonstrates that the STA-DRN responds significantly in specific locations related to depression. The code is available at: https://github.com/divertingPan/STA-DRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
1秒前
bkagyin应助满意非笑采纳,获得10
3秒前
折木完成签到,获得积分10
4秒前
超级苗条完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
可靠F发布了新的文献求助10
12秒前
13秒前
16秒前
满意非笑发布了新的文献求助10
17秒前
手拿把掐吴完成签到,获得积分10
17秒前
17秒前
qianqian完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI2S应助光亮笑柳采纳,获得10
20秒前
善学以致用应助章鱼哥采纳,获得10
20秒前
完美世界应助HHHH采纳,获得10
21秒前
22秒前
24秒前
25秒前
25秒前
润润润完成签到 ,获得积分10
27秒前
万的饭完成签到,获得积分10
27秒前
123456完成签到,获得积分10
28秒前
29秒前
29秒前
斯文败类应助guojingjing采纳,获得10
30秒前
31秒前
31秒前
32秒前
王一完成签到 ,获得积分10
33秒前
HHHH发布了新的文献求助10
34秒前
坚强冰蝶完成签到,获得积分10
34秒前
章鱼哥发布了新的文献求助10
35秒前
平常的毛豆应助光亮笑柳采纳,获得10
35秒前
赘婿应助razor采纳,获得10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865141
求助须知:如何正确求助?哪些是违规求助? 3407446
关于积分的说明 10654334
捐赠科研通 3131515
什么是DOI,文献DOI怎么找? 1727086
邀请新用户注册赠送积分活动 832132
科研通“疑难数据库(出版商)”最低求助积分说明 780175