Joint Edge Server Selection and Data Set Management for Federated-Learning-Enabled Mobile Traffic Prediction

计算机科学 服务器 移动边缘计算 杠杆(统计) 云计算 最优化问题 人工智能 分布式计算 机器学习 计算机网络 算法 操作系统
作者
Doyeon Kim,Seungjae Shin,Jae-Won Jeong,Joohyung Lee
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4971-4986 被引量:6
标识
DOI:10.1109/jiot.2023.3301019
摘要

To realize intelligent network management for future 6G-mobile edge computing (MEC) systems, mobile traffic prediction is crucial. Most of the previous machine learning-driven prediction approaches adopt traditional centralized training paradigm wherein mobile traffic data should be transferred to a central server. To exploit the distributed and parallel processing nature of MEC servers for training mobile traffic prediction models in a fast and secure manner, we propose a novel federated learning (FL) framework wherein locally trained prediction models over MEC servers are aggregated into a global model with joint optimization of MEC server selection and data set management for FL participation. From mathematical investigations of the influence of MEC server participation and data set utilization on the global model accuracy and training costs, including both training latency and energy consumption in the FL process, we first formulate an optimization problem for balancing the accuracy-cost tradeoff by considering a linear accuracy estimation model. Here, the optimization problem is designed using mixed-integer nonlinear programming, which is generally known as NP-hard. We then leverage a number of relaxation techniques to develop near-optimal yet the plausible algorithm based on linear programming. Furthermore, for practical concern, the proposed problem is extended by considering a concave accuracy estimation model; a genetic-based heuristic approach to the extension is proposed for determining the suboptimal solution. The numerical and simulation results suggest that our proposed framework can be effective for building mobile traffic prediction models in a more cost-efficient manner while maintaining competitive prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助苗条的傲丝采纳,获得10
1秒前
香蕉觅云应助Pomelo采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
年纪婷完成签到,获得积分10
3秒前
3秒前
CipherSage应助Agoni采纳,获得10
3秒前
科研通AI5应助猪猪hero采纳,获得10
3秒前
11完成签到,获得积分10
3秒前
JamesPei应助sunshine采纳,获得10
4秒前
阳光香水发布了新的文献求助10
4秒前
舒心的雨双完成签到,获得积分20
4秒前
小马甲应助appa采纳,获得30
5秒前
5秒前
Boyce发布了新的文献求助30
5秒前
Costing发布了新的文献求助10
5秒前
Nicole完成签到,获得积分10
5秒前
公西翠萱发布了新的文献求助10
5秒前
QQ完成签到,获得积分10
6秒前
dfghjkl发布了新的文献求助10
7秒前
魏伯安完成签到,获得积分10
7秒前
比哈特发布了新的文献求助10
7秒前
7秒前
aabot完成签到,获得积分10
8秒前
领导范儿应助pragmatic采纳,获得30
9秒前
闪闪的又亦给闪闪的又亦的求助进行了留言
9秒前
猪猪hero发布了新的文献求助10
10秒前
科研通AI5应助多看点采纳,获得10
10秒前
甜甜世立发布了新的文献求助10
10秒前
11秒前
李爱国应助科研鲁宾孙采纳,获得10
11秒前
慕青应助胡萝卜采纳,获得10
11秒前
FashionBoy应助nnnnn采纳,获得10
12秒前
糯米小圆子完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492066
求助须知:如何正确求助?哪些是违规求助? 3945376
关于积分的说明 12234701
捐赠科研通 3602525
什么是DOI,文献DOI怎么找? 1981366
邀请新用户注册赠送积分活动 1018208
科研通“疑难数据库(出版商)”最低求助积分说明 910869