Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network

计算机科学 机器学习 人工智能 推论 过度拟合 预言 核(代数) 数据挖掘 高斯过程 人工神经网络 高斯分布 物理 数学 组合数学 量子力学
作者
Jing Yang,Xiaomin Wang,Zhipeng Luo
出处
期刊:Information Sciences [Elsevier BV]
卷期号:653: 119795-119795 被引量:9
标识
DOI:10.1016/j.ins.2023.119795
摘要

Predicting remaining useful life (RUL) of machinery is of vital importance to prognostics and health management. Reliable and accurate RUL prediction not only can reduce maintenance costs and increase machine availability but also even prevent catastrophic consequences. In reality, RUL predictions usually require numerous certain kinds of machine degradation data. However, complex operating conditions and safety issues may often result in fragmented data records generated, with very few complete samples being usable. To overcome the challenge of RUL prediction with limited data, this paper proposes a novel MetaDESK model that is based on meta-learning with deep sparse kernel network. The general idea is to train a sparse kernel with a variational posterior in a data-driven fashion, and then transfer it to a new few-shot RUL task via meta-knowledge. Specifically, we first incorporate a Gaussian Process into the model-agnostic meta-learning (MAML) framework and use variational inference to estimate latent variables as kernel features, which allows us to sample from a non-Gaussian distribution of the posterior. Then, the KL-divergence of sparse approximation is added to the kernel features as a regularization term through inference to reduce the overfitting problem. Also, to exploit the dependencies of the tasks we integrate both their shared knowledge and task-specific information into a contextual reasoning process, which is implemented by a bidirectional long short-term memory network. To evaluate our proposed model, we conduct extensive experiments using publicly available degradation data, and the results verify the model's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的白萱完成签到 ,获得积分10
刚刚
饼子完成签到 ,获得积分10
刚刚
爱研究的小马完成签到,获得积分10
1秒前
山神厘子完成签到,获得积分10
1秒前
Jimin发布了新的文献求助10
1秒前
苗条冰菱发布了新的文献求助10
1秒前
wyq完成签到,获得积分10
1秒前
dove完成签到 ,获得积分10
2秒前
ifly发布了新的文献求助10
2秒前
2秒前
tong童发布了新的文献求助10
3秒前
Ache完成签到,获得积分10
3秒前
小詹发布了新的文献求助10
3秒前
大仙儿完成签到,获得积分10
3秒前
4秒前
爆米花应助Anastasia采纳,获得10
4秒前
典雅的绿凝完成签到 ,获得积分10
4秒前
Panchael发布了新的文献求助10
5秒前
Ava应助荔枝QQ糖采纳,获得10
5秒前
pharmstudent完成签到,获得积分10
7秒前
暗栀发布了新的文献求助10
7秒前
7秒前
8秒前
这瓜不卖发布了新的文献求助10
8秒前
左丘忻完成签到,获得积分10
8秒前
诸葛不亮完成签到,获得积分10
8秒前
天天快乐应助隐形鸣凤采纳,获得10
8秒前
贪玩海之完成签到,获得积分10
8秒前
9秒前
寒冷的天亦完成签到,获得积分10
9秒前
Ori完成签到,获得积分20
10秒前
张茜完成签到,获得积分10
11秒前
窦天蓝发布了新的文献求助10
11秒前
11秒前
11秒前
我是老大应助耶耶耶耶耶采纳,获得10
11秒前
踏雪寻梅完成签到,获得积分20
11秒前
12秒前
12秒前
单薄的念珍完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789000
求助须知:如何正确求助?哪些是违规求助? 3334088
关于积分的说明 10267170
捐赠科研通 3050312
什么是DOI,文献DOI怎么找? 1673974
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570