An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm

柴油发电机 光伏系统 电力系统 调度(生产过程) 遗传算法 计算机科学 渡线 混合动力 发电 数学优化 最优化问题 工程类 功率(物理) 汽车工程 柴油 算法 电气工程 物理 数学 量子力学 机器学习 人工智能
作者
Xinyu Wang,Hongyu Zhu,Xiaoyuan Luo,Shaoping Chang,Xinping Guan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy [SAGE Publishing]
卷期号:238 (2): 348-361 被引量:1
标识
DOI:10.1177/09576509231205342
摘要

Due to the energy crisis and environmental deterioration, the emerging hybrid energy ship power system gradually replaced the traditional ship power system to keep environmental friendliness by employing the clean energy. However, the increase of energy storage and photovoltaic generation system brings enormous challenge to the optimization scheduling of hybrid energy ship power system. For this reason, an improved genetic algorithm-based optimal scheduling strategy for the hybrid energy ship power system is developed in this paper. Firstly, a novel hybrid energy ship power system model including the diesel generator, energy storage system, propulsion system, dynamic load and photovoltaic power generation device is constructed under the constraint of energy efficiency and greenhouse gases emissions. Considering the various navigation situations that the ship may encounter, such as photovoltaic power generation limit in extreme weather and diesel generator power change in load shedding, the corresponding scheduling optimization problems for the hybrid energy ship power system are established. Under the cost and gas emission constraints, an improved genetic algorithm-based scheduling optimization algorithm is proposed. By introducing the nonlinear parameter change model in crossover and mutation operator, the performance of improved genetic algorithm can be enhanced, such as convergence speed and global optimization ability. Compared with current works, the proposed scheduling optimization strategy can achieve the lowest cost while reducing environmental impacts. Finally, simulation results under the given navigation cases demonstrate the superiority of the proposed improved genetic algorithm-based scheduling optimization strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱先生完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
栀璃鸳挽发布了新的文献求助10
2秒前
奶油泡芙完成签到,获得积分10
3秒前
蚍蜉渡海发布了新的文献求助10
3秒前
一条鱼完成签到,获得积分10
3秒前
xuhang发布了新的文献求助10
3秒前
5秒前
7秒前
NULI完成签到,获得积分10
8秒前
zho发布了新的文献求助10
9秒前
云朗完成签到,获得积分10
11秒前
Dong完成签到 ,获得积分10
11秒前
田様应助mike采纳,获得10
11秒前
絮甯完成签到,获得积分10
12秒前
Chandler完成签到,获得积分10
13秒前
RRRZZ完成签到 ,获得积分10
14秒前
chxxx完成签到,获得积分10
15秒前
思源应助Mark采纳,获得10
16秒前
黄黄完成签到,获得积分10
16秒前
腼腆的又晴完成签到,获得积分10
16秒前
看火人完成签到 ,获得积分10
16秒前
快乐吗猪完成签到 ,获得积分10
16秒前
17秒前
淙淙柔水完成签到,获得积分0
17秒前
汤绮菱发布了新的文献求助10
19秒前
zojoy完成签到,获得积分10
20秒前
赘婿应助shanp采纳,获得10
21秒前
岁岁完成签到 ,获得积分10
22秒前
小小完成签到 ,获得积分10
22秒前
lzzzz完成签到,获得积分10
22秒前
陈新完成签到,获得积分10
22秒前
23秒前
Ava应助权归尘采纳,获得20
24秒前
24秒前
李德胜完成签到,获得积分10
24秒前
木直完成签到,获得积分10
25秒前
一郭红烧肉完成签到,获得积分10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385945
关于积分的说明 10543154
捐赠科研通 3106726
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774390