Small-sample stacking model for qualitative analysis of aluminum alloys based on femtosecond laser-induced breakdown spectroscopy

激光诱导击穿光谱 随机森林 堆积 稳健性(进化) 计算机科学 人工智能 模式识别(心理学) 支持向量机 飞秒 主成分分析 算法 材料科学 激光器 光学 物理 化学 生物化学 核磁共振 基因
作者
Qing Ma,Ziyuan Liu,Tong Sun,Xun Gao,Yujia Dai
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (17): 27633-27633 被引量:15
标识
DOI:10.1364/oe.497880
摘要

Material characterization using laser-induced breakdown spectroscopy (LIBS) often relies on extensive data for effective analysis. However, data acquisition can be challenging, and the high dimensionality of raw spectral data combined with a large-scale sample dataset can strain computational resources. In this study, we propose a small sample size stacking model based on femtosecond LIBS to achieve accurate qualitative analysis of aluminum alloys. The proposed three-layer stacking algorithm performs data reconstruction and feature extraction to enhance the analysis. In the first layer, random forest spectral feature selection and specific spectral line spreading are employed to reconstruct the data. The second layer utilizes three heterogeneous classifiers to extract features from the reconstructed spectra in different feature spaces, generating second-level reconstructed data. Finally, the third layer utilizes the reconstructed dataset for qualitative prediction. Results indicate that the Stacking algorithm outperforms traditional methods such as k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF), including those combined with principal component analysis (PCA). The Stacking algorithm achieves an impressive 100% recognition rate in classification, with Accuracy, precision, recall, and F1 scores reaching 1.0. Moreover, as the number of samples decreases, the gap between the recognition accuracy of the Stacking algorithm and traditional approaches widens. For instance, using only 15 spectra for training, the Stacking algorithm achieves a recognition accuracy of 96.47%, significantly surpassing the improved RF's accuracy of 71.76%. Notably, the model demonstrates strong robustness compared to traditional modeling approaches, and the qualitative prediction error remains consistently below 5%. These findings underscore the model's enhanced generalization ability and higher prediction accuracy in small sample machine learning. This research contributes significantly to improving the applicability of the LIBS technique for fast detection and analysis of small samples. It provides valuable insights into the development of effective methodologies for material characterization, paving the way for advancements in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
栾栾完成签到,获得积分10
1秒前
暴躁的凌柏完成签到 ,获得积分10
1秒前
li完成签到,获得积分20
2秒前
2秒前
沉沉发布了新的文献求助10
3秒前
AA发布了新的文献求助30
3秒前
HAL应助期待未来的自己采纳,获得10
5秒前
自信的昊焱完成签到,获得积分10
6秒前
shelemi发布了新的文献求助10
6秒前
汉堡包应助yeeee采纳,获得10
6秒前
祖金杰发布了新的文献求助10
6秒前
7秒前
大个应助123采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助蓝莓芝士采纳,获得10
8秒前
8秒前
suzy-123发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
不配.应助烂漫百招采纳,获得20
11秒前
11秒前
12秒前
decade完成签到,获得积分10
12秒前
12秒前
沉着冷静韩道友完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
GG发布了新的文献求助10
14秒前
Lucas应助liuy03采纳,获得10
15秒前
yiren完成签到,获得积分10
15秒前
16秒前
fan发布了新的文献求助10
16秒前
Shirley发布了新的文献求助10
17秒前
17秒前
祝星发布了新的文献求助10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232724
求助须知:如何正确求助?哪些是违规求助? 3766059
关于积分的说明 11832964
捐赠科研通 3424638
什么是DOI,文献DOI怎么找? 1879415
邀请新用户注册赠送积分活动 932281
科研通“疑难数据库(出版商)”最低求助积分说明 839512