An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections

尖峰神经网络 计算机科学 人工智能 无监督学习 MNIST数据库 机器学习 人工神经网络 峰值时间相关塑性 竞争性学习 模式识别(心理学) 突触可塑性 生物化学 受体 化学
作者
Yiting Dong,Dongcheng Zhao,Yang Li,Yi Zeng
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 799-808 被引量:48
标识
DOI:10.1016/j.neunet.2023.06.019
摘要

The backpropagation algorithm has promoted the rapid development of deep learning, but it relies on a large amount of labeled data and still has a large gap with how humans learn. The human brain can quickly learn various conceptual knowledge in a self-organized and unsupervised manner, accomplished through coordinating various learning rules and structures in the human brain. Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly. In this paper, taking inspiration from short-term synaptic plasticity, we design an adaptive synaptic filter and introduce the adaptive spiking threshold as the neuron plasticity to enrich the representation ability of SNNs. We also introduce an adaptive lateral inhibitory connection to adjust the spikes balance dynamically to help the network learn richer features. To speed up and stabilize the training of unsupervised spiking neural networks, we design a samples temporal batch STDP (STB-STDP), which updates weights based on multiple samples and moments. By integrating the above three adaptive mechanisms and STB-STDP, our model greatly accelerates the training of unsupervised spiking neural networks and improves the performance of unsupervised SNNs on complex tasks. Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets. Further, we tested on the more complex CIFAR10 dataset, and the results fully illustrate the superiority of our algorithm. Our model is also the first work to apply unsupervised STDP-based SNNs to CIFAR10. At the same time, in the small-sample learning scenario, it will far exceed the supervised ANN using the same structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔安筠关注了科研通微信公众号
刚刚
1秒前
LTB发布了新的文献求助10
2秒前
烟花应助wyw采纳,获得30
2秒前
暗生崎乐发布了新的文献求助10
2秒前
hms发布了新的文献求助10
3秒前
华仔应助龚书婷采纳,获得10
4秒前
张之晟完成签到,获得积分20
6秒前
Hgybdo完成签到,获得积分10
6秒前
kingwill发布了新的文献求助30
7秒前
ZJRerrr发布了新的文献求助10
8秒前
tree完成签到,获得积分10
12秒前
13秒前
FashionBoy应助tly采纳,获得10
13秒前
green完成签到,获得积分10
14秒前
星辰大海应助JIE采纳,获得10
15秒前
15秒前
幼安k完成签到,获得积分10
15秒前
evans完成签到,获得积分10
15秒前
烟花应助667788采纳,获得10
16秒前
16秒前
Owen应助ZHXX采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
bubu11关注了科研通微信公众号
17秒前
你好完成签到 ,获得积分10
17秒前
aikeyan发布了新的文献求助10
17秒前
peilinyu完成签到,获得积分10
18秒前
善学以致用应助ZJRerrr采纳,获得10
18秒前
卡西莫多发布了新的文献求助10
19秒前
吃面的章鱼完成签到,获得积分10
20秒前
20秒前
20秒前
LiJing666完成签到,获得积分10
22秒前
俏皮的天空完成签到 ,获得积分10
25秒前
25秒前
25秒前
Mikecheng完成签到 ,获得积分10
26秒前
beizi完成签到,获得积分10
27秒前
zsyhcl应助hyx9504采纳,获得20
28秒前
Aza完成签到,获得积分20
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229