Multi-purchase Behavior: Modeling, Estimation, and Optimization

计算机科学 收入 操作化 计算 班级(哲学) 多项式分布 数学优化 运筹学 计量经济学 人工智能 算法 数学 经济 哲学 会计 认识论
作者
Theja Tulabandhula,Deeksha Sinha,Saketh Reddy Karra,Prasoon Patidar
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:6
标识
DOI:10.1287/msom.2020.0238
摘要

Problem definition: We study the problem of modeling purchase of multiple products and using it to display optimized recommendations for online retailers and e-commerce platforms. Rich modeling of users and fast computation of optimal products to display given these models can lead to significantly higher revenues and simultaneously enhance the user experience. Methodology/results: We present a parsimonious multi-purchase family of choice models called the BundleMVL-K family and develop a binary search based iterative strategy that efficiently computes optimized recommendations for this model. We establish the hardness of computing optimal recommendation sets and derive several structural properties of the optimal solution that aid in speeding up computation. This is one of the first attempts at operationalizing multi-purchase class of choice models. We show one of the first quantitative links between modeling multiple purchase behavior and revenue gains. The efficacy of our modeling and optimization techniques compared with competing solutions is shown using several real-world data sets on multiple metrics such as model fitness, expected revenue gains, and run-time reductions. For example, the expected revenue benefit of taking multiple purchases into account is observed to be [Formula: see text] in relative terms for the Ta Feng and UCI shopping data sets compared with the multinomial choice model for instances with ∼1,500 products. Additionally, across six real-world data sets, the test log-likelihood fits of our models are on average 17% better in relative terms. Managerial implications: Our work contributes to the study of multi-purchase decisions, analyzing consumer demand, and the retailers optimization problem. The simplicity of our models and the iterative nature of our optimization technique allows practitioners meet stringent computational constraints while increasing their revenues in practical recommendation applications at scale, especially in e-commerce platforms and other marketplaces. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2020.0238 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到 ,获得积分10
2秒前
云轩完成签到,获得积分10
3秒前
4秒前
5秒前
77最可爱完成签到,获得积分10
8秒前
9秒前
陶赖赖完成签到,获得积分10
9秒前
dedeyy完成签到,获得积分10
10秒前
拼搏小丸子完成签到 ,获得积分10
13秒前
14秒前
NexusExplorer应助一只盒子采纳,获得10
14秒前
大个应助librahapper采纳,获得10
15秒前
赘婿应助如意的书南采纳,获得10
16秒前
yidingshangan发布了新的文献求助100
18秒前
科研通AI5应助活力的尔蓉采纳,获得10
19秒前
华仔应助逃亡的小狗采纳,获得10
20秒前
22秒前
26秒前
27秒前
一只盒子发布了新的文献求助10
31秒前
33秒前
孔刚完成签到 ,获得积分10
34秒前
李健应助小智多星采纳,获得10
39秒前
清茶韵心发布了新的文献求助10
43秒前
清新的寄风完成签到 ,获得积分10
43秒前
smart完成签到,获得积分10
44秒前
科目三应助活力的尔蓉采纳,获得10
44秒前
LT发布了新的文献求助10
45秒前
45秒前
48秒前
49秒前
半颗糖完成签到 ,获得积分10
50秒前
kai发布了新的文献求助10
52秒前
54秒前
达da完成签到,获得积分10
55秒前
56秒前
陆小果完成签到,获得积分10
58秒前
HL完成签到,获得积分10
59秒前
1分钟前
xingxinghan发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324256
关于积分的说明 10217657
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798513
科研通“疑难数据库(出版商)”最低求助积分说明 758401