Relation-Aware Multi-Positive Contrastive Knowledge Graph Completion with Embedding Dimension Scaling

嵌入 计算机科学 关系(数据库) 理论计算机科学 图形 知识图 人工智能 特征学习 机器学习 自然语言处理 数据挖掘
作者
Bin Shang,Yinliang Zhao,Di Wang,Jun Liu
标识
DOI:10.1145/3539618.3591756
摘要

Recently, a large amount of work has emerged for knowledge graph completion (KGC), which aims to reason over known facts and to infer the missing links. Meanwhile, contrastive learning has been applied to the KGC tasks, which can improve the representation quality of entities and relations. However, existing KGC approaches tend to improve their performance with high-dimensional embeddings and complex models, which make them suffer from large storage space and high training costs. Furthermore, contrastive loss with single positive sample learns little structural and semantic information in knowledge graphs due to the complex relation types. To address these challenges, we propose a novel knowledge graph completion model named ConKGC with the embedding dimension scaling and a relation-aware multi-positive contrastive loss. In order to achieve both space consumption reduction and model performance improvement, a new scoring function is proposed to map the raw low-dimensional embeddings of entities and relations to high-dimensional embedding space, and predict low-dimensional tail entities with latent semantic information of high-dimensional embeddings. In addition, ConKGC designs a multiple weak positive samples based contrastive loss under different relation types to maintain two important training targets, Alignment and Uniformity. This loss function and few parameters of the model ensure that ConKGC performs best and has fast convergence speed. Extensive experiments on three standard datasets confirm the effectiveness of our innovations, and the performance of ConKGC is significantly improved compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆爸爸发布了新的文献求助100
刚刚
刚刚
3秒前
SSD发布了新的文献求助10
5秒前
无花果应助villanelle采纳,获得10
5秒前
7秒前
盼芙完成签到 ,获得积分10
7秒前
可靠之玉发布了新的文献求助10
10秒前
Kenny发布了新的文献求助10
10秒前
打打应助小迷鹿采纳,获得10
10秒前
今后应助淡定的安白采纳,获得10
11秒前
13秒前
13秒前
JMWWW完成签到 ,获得积分10
15秒前
李晗发布了新的文献求助10
18秒前
半生瓜发布了新的文献求助10
18秒前
Orange应助小刘采纳,获得10
19秒前
LKSkywalker发布了新的文献求助10
21秒前
zhang1发布了新的文献求助10
23秒前
24秒前
Akim应助十一玮采纳,获得10
27秒前
燕儿应助nnnd77采纳,获得10
29秒前
LKSkywalker完成签到,获得积分10
30秒前
31秒前
32秒前
SciGPT应助笨笨雪碧采纳,获得10
33秒前
34秒前
蛋蛋发布了新的文献求助10
35秒前
zzz完成签到,获得积分10
35秒前
半生瓜完成签到,获得积分20
36秒前
小迷鹿完成签到,获得积分10
37秒前
39秒前
Morri发布了新的文献求助10
40秒前
40秒前
青羽发布了新的文献求助10
42秒前
十一玮发布了新的文献求助10
43秒前
刘金帅完成签到,获得积分10
44秒前
谦让涵菡完成签到 ,获得积分10
44秒前
李健应助刘YF采纳,获得50
46秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761641
求助须知:如何正确求助?哪些是违规求助? 4101657
关于积分的说明 12692008
捐赠科研通 3817461
什么是DOI,文献DOI怎么找? 2107224
邀请新用户注册赠送积分活动 1131922
关于科研通互助平台的介绍 1010885