化学
氧化还原
阴极
离子
锰
无机化学
氧气
有机化学
物理化学
作者
Weiyuan Huang,Jimin Qiu,Zengqing Zhuo,Jianguo Wen,Yaqing Guo,Yifei Yuan,Zhefeng Chen,Jiangtao Hu,Tianyi Li,Lirong Zheng,Lunhua He,Jinghua Guo,Mingjian Zhang,Feng Pan,Khalil Amine,Tongchao Liu
摘要
Anionic oxygen redox chemistry in Li-rich Mn-based layer oxide cathodes represents a transformative approach for boosting the energy density of next-generation lithium-ion batteries. However, conventional oxygen redox reactions often induce oxygen dimerization at high voltages, leading to irreversible lattice oxygen loss and a rapid voltage fade. Herein, we achieve highly reversible oxygen redox chemistry through a new quasi-ordered structural design that incorporates both intra- and interlayer cation disorder configurations. This unique structure significantly enhances lattice oxygen stability, effectively stabilizes oxidized oxygen, and inhibits the formation of peroxo- or superoxol-like species, thereby enabling anionic redox reactions to proceed reversibly even at deep delithiation states. The quasi-ordered design mitigates irreversible phase transitions and preserves the structural integrity throughout extended cycling. Consequently, the proposed cathode demonstrates exceptional cyclability with negligible capacity and voltage fade, retaining 99% capacity and 98% average voltage after long-term cycling. This work provides fresh insights into addressing issues related to lattice oxygen instabilities and reforming strategies for developing long-life, high-energy-density anionic redox cathode materials for advanced batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI