Ligand Microenvironment-Regulated Nanozymes Enabled Machine Learning-Assisted Sensor Array for Simultaneous Identification of Phenolic Pollutants

配体(生物化学) 污染物 鉴定(生物学) 化学 纳米技术 组合化学 环境化学 材料科学 生物化学 生物 有机化学 受体 植物
作者
Dali Wei,Mengfan Li,Yudi Yang,Chunmeng Deng,Fang Zhu,Ming Li,Yibin Deng,Zhen Zhang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.5c01499
摘要

Phenolic pollutants pose a great threat to human health due to high toxicity, whereas existing methods are difficult to achieve the rapid recognition of multiple phenolic pollutants. In this study, we developed a novel machine learning-assisted sensor array based on ligand microenvironment-regulated Pt nanozymes for the simultaneous differentiation of five phenolic pollutants (phenol, 2,4-DCP, p-chlorophenol, o-chlorophenol, and m-chlorophenol), wherein four cellulose ligands (carboxymethylcellulose, CMC; methylcellulose, MC; hydroxyethyl cellulose, HC; and hydroxypropyl methyl cellulose, HPMC)-regulated Pt nanozymes (Pt@CMC, Pt@MC, Pt@HC, and Pt@HPMC) with considerable laccase-mimicking activity were designed, and the Pt@CMC nanozyme exhibited the highest catalytic activity, which was about 7.5-folds than that of natural laccase. The calculation of density functional theory revealed that Pt@CMC had a stronger ability for capturing 2,4-DCP molecules, showing higher laccase-like activity. More importantly, the different cellulose ligands endowed four Pt nanozymes with laccase-like activity diverse recognition capability to phenolic compounds; thus, a nanozyme sensor array was developed for the differentiation of five phenolic pollutants. Moreover, the integration of a machine learning algorithm and the nanozyme sensor array successfully achieved accurate identification and prediction of the five phenolic pollutants in real water samples. Therefore, this study provided an emerging sensing strategy for the simultaneous identification of phenolic pollutants, carving a promising path for the application of sensor arrays and machine learning algorithms in environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liekkas完成签到,获得积分10
1秒前
断了的弦完成签到,获得积分10
1秒前
1秒前
xy完成签到,获得积分10
4秒前
5秒前
富贵开花发布了新的文献求助10
6秒前
11秒前
yyyb发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
柏林寒冬完成签到,获得积分0
15秒前
cxm发布了新的文献求助10
16秒前
17秒前
解语花发布了新的文献求助10
17秒前
DD完成签到,获得积分10
18秒前
张益达发布了新的文献求助30
18秒前
CipherSage应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
脑洞疼应助富贵开花采纳,获得10
20秒前
汉堡包应助旺仔同学采纳,获得10
20秒前
丰息驳回了yuexu应助
20秒前
cxm完成签到,获得积分10
22秒前
解语花完成签到,获得积分10
23秒前
司空踏歌发布了新的文献求助10
24秒前
FashionBoy应助大面包采纳,获得10
29秒前
cloudy发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777863
求助须知:如何正确求助?哪些是违规求助? 4108969
关于积分的说明 12710851
捐赠科研通 3830907
什么是DOI,文献DOI怎么找? 2113109
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020740