Enabling Early Identification of Malignant Vertebral Compression Fractures via 2.5D Convolutional Neural Network Model with CT Image Analysis

医学 卷积神经网络 鉴定(生物学) 放射科 椎体压缩性骨折 压缩(物理) 人工智能 椎体 人工神经网络 模式识别(心理学) 外科 计算机科学 植物 材料科学 复合材料 生物
作者
Chengbin Huang,Enli Li,Jiasen Hu,Yuli Huang,Yuxuan Wu,Bingzhe Wu,Jiahao Tang,Lei Yang
出处
期刊:Spine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/brs.0000000000005438
摘要

This study employed a retrospective data analysis approach combined with model development and validation. The present study introduces a 2.5D convolutional neural network (CNN) model leveraging CT imaging to facilitate the early detection of malignant vertebral compression fractures (MVCFs), potentially reducing reliance on invasive biopsies. Vertebral histopathological biopsy is recognized as the gold standard for differentiating between osteoporotic and malignant vertebral compression fractures (VCFs). Nevertheless, its application is restricted due to its invasive nature and high cost, highlighting the necessity for alternative methods to identify MVCFs. The clinical, imaging, and pathological data of patients who underwent vertebral augmentation and biopsy at Institution 1 and Institution 2 were collected and analyzed. Based on the vertebral CT images of these patients, 2D, 2.5D, and 3D CNN models were developed to identify the patients with osteoporotic vertebral compression fractures (OVCF) and MVCF. To verify the clinical application value of the CNN model, two rounds of reader studies were performed. The 2.5D CNN model performed well, and its performance in identifying MVCF patients was significantly superior to that of the 2D and 3D CNN models. In the training dataset, the area under the receiver operating characteristic curve (AUC) of the 2.5D CNN model was 0.996 and an F1 score of 0.915. In the external cohort test, the AUC was 0.815 and an F1 score of 0.714. And clinicians' ability to identify MVCF patients has been enhanced by the 2.5D CNN model. With the assistance of the 2.5D CNN model, the AUC of senior clinicians was 0.882, and the F1 score was 0.774. For junior clinicians, the 2.5D CNN model-assisted AUC was 0.784 and the F1 score was 0.667. The development of our 2.5D CNN model marks a significant step towards non-invasive identification of MVCF patients,. The 2.5D CNN model may be a potential model to assist clinicians in better identifying MVCF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向芹菜完成签到,获得积分10
1秒前
Canon大炮完成签到 ,获得积分10
1秒前
平安如意完成签到,获得积分10
3秒前
凝心发布了新的文献求助10
3秒前
3秒前
射天狼完成签到,获得积分10
4秒前
牢大别肘关注了科研通微信公众号
4秒前
可爱的函函应助懒羊羊采纳,获得10
5秒前
外向芹菜发布了新的文献求助10
5秒前
7秒前
lome发布了新的文献求助10
7秒前
可爱天川完成签到,获得积分10
9秒前
天天快乐应助asdfqwer采纳,获得10
10秒前
Babyjoe完成签到,获得积分10
10秒前
情怀应助外向芹菜采纳,获得10
13秒前
13秒前
fanyy完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
直率的画笔完成签到,获得积分10
17秒前
一期一会完成签到,获得积分10
18秒前
18秒前
小白发布了新的文献求助10
18秒前
19秒前
凝心完成签到,获得积分10
21秒前
梦幻发布了新的文献求助10
21秒前
天天快乐应助tomato采纳,获得30
22秒前
芋圆Z.发布了新的文献求助10
25秒前
飞天三叉戟完成签到,获得积分10
27秒前
28秒前
wanci应助无语采纳,获得10
28秒前
JamesPei应助lome采纳,获得10
28秒前
李爱国应助坚强的缘分采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4006712
求助须知:如何正确求助?哪些是违规求助? 3546527
关于积分的说明 11296359
捐赠科研通 3282152
什么是DOI,文献DOI怎么找? 1809951
邀请新用户注册赠送积分活动 885740
科研通“疑难数据库(出版商)”最低求助积分说明 811084