亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning predicts the prognosis of breast cancer patients with initial bone metastases

医学 乳腺癌 内科学 肿瘤科 比例危险模型 骨转移 倾向得分匹配 化疗 阶段(地层学) 生存分析 癌症 外科 生物 古生物学
作者
Chaofan Li,Mengjie Liu,Jia Li,Weiwei Wang,Cong Feng,Yifan Cai,Fei Wu,Xixi Zhao,Chong Du,Yinbin Zhang,Yusheng Wang,Shuqun Zhang,Jingkun Qu
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:10 被引量:2
标识
DOI:10.3389/fpubh.2022.1003976
摘要

Bone is the most common metastatic site of patients with advanced breast cancer and the survival time is their primary concern; however, we lack accurate predictive models in clinical practice. In addition to this, primary surgery for breast cancer patients with bone metastases is still controversial.The data used for analysis in this study were obtained from the SEER database (2010-2019). We made a COX regression analysis to identify prognostic factors of patients with bone metastatic breast cancer (BMBC). Through cross-validation, we constructed an XGBoost model to predicting survival in patients with BMBC. We also investigated the prognosis of patients treated with neoadjuvant chemotherapy plus surgical and chemotherapy alone using propensity score matching and K-M survival analysis.Our validation results showed that the model has high sensitivity, specificity, and correctness, and it is the most accurate one to predict the survival of patients with BMBC (1-year AUC = 0.818, 3-year AUC = 0.798, and 5-year survival AUC = 0.791). The sensitivity of the 1-year model was higher (0.79), while the specificity of the 5-year model was higher (0.86). Interestingly, we found that if the time from diagnosis to therapy was ≥1 month, patients with BMBC had even better survival than those who started treatment immediately (HR = 0.920, 95%CI 0.869-0.974, P < 0.01). The BMBC patients with an income of more than USD$70,000 had better OS (HR = 0.814, 95%CI 0.745-0.890, P < 0.001) and BCSS (HR = 0.808 95%CI 0.735-0.889, P < 0.001) than who with income of < USD$50,000. We also found that compared with chemotherapy alone, neoadjuvant chemotherapy plus surgical treatment significantly improved OS and BCSS in all molecular subtypes of patients with BMBC, while only the patients with bone metastases only, bone and liver metastases, bone and lung metastases could benefit from neoadjuvant chemotherapy plus surgical treatment.We constructed an AI model to provide a quantitative method to predict the survival of patients with BMBC, and our validation results indicate that this model should be highly reproducible in a similar patient population. We also identified potential prognostic factors for patients with BMBC and suggested that primary surgery followed by neoadjuvant chemotherapy might increase survival in a selected subgroup of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
4秒前
5秒前
mmyhn发布了新的文献求助10
8秒前
PYF完成签到,获得积分10
33秒前
1分钟前
善学以致用应助zjq采纳,获得10
1分钟前
kiko完成签到,获得积分10
1分钟前
Lx030324发布了新的文献求助10
1分钟前
李爱国应助Han.T采纳,获得10
1分钟前
2分钟前
David发布了新的文献求助50
2分钟前
畜牧笑笑发布了新的文献求助10
2分钟前
长京完成签到,获得积分10
2分钟前
Lx030324完成签到,获得积分10
2分钟前
2分钟前
杏林小郑完成签到 ,获得积分10
2分钟前
ding应助西瓜汽水采纳,获得10
2分钟前
2分钟前
西瓜汽水发布了新的文献求助10
2分钟前
3分钟前
3分钟前
电池菜鸟发布了新的文献求助10
3分钟前
3分钟前
1643872162发布了新的文献求助10
3分钟前
邵诗颖应助1643872162采纳,获得30
3分钟前
可爱的函函应助咸鱼一号采纳,获得10
4分钟前
大闲鱼铭一完成签到 ,获得积分10
4分钟前
Rocky完成签到,获得积分10
4分钟前
酷酷友容应助Rocky采纳,获得10
4分钟前
4分钟前
4分钟前
korchid发布了新的文献求助10
4分钟前
4分钟前
ljj发布了新的文献求助10
4分钟前
科目三应助korchid采纳,获得10
4分钟前
ljj完成签到,获得积分10
5分钟前
3113129605完成签到 ,获得积分10
5分钟前
聪明勇敢有力气完成签到 ,获得积分10
5分钟前
李健的小迷弟应助三土采纳,获得10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124264
求助须知:如何正确求助?哪些是违规求助? 3662154
关于积分的说明 11590291
捐赠科研通 3362579
什么是DOI,文献DOI怎么找? 1847653
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838