已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving generalisation and accuracy of on-line milling chatter detection via a novel hybrid deep convolutional neural network

块(置换群论) 人工智能 计算机科学 卷积神经网络 特征(语言学) 模式识别(心理学) 人工神经网络 直线(几何图形) 机械加工 工程类 数学 几何学 语言学 机械工程 哲学
作者
Pengfei Zhang,Dong Gao,Dongbo Hong,Yong Lü,Qian Wu,Shusong Zan,Zhirong Liao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110241-110241 被引量:29
标识
DOI:10.1016/j.ymssp.2023.110241
摘要

Unstable chatter seriously reduces the quality of machined workpiece and machining efficiency. In order to improve productivity, on-line chatter detection has attracted much interest in the past decades. Nevertheless, traditional methods are inevitably flawed due to the manually extracted features. Deep learning methods possess outstanding feature learning and classification capabilities, but the generalisation and accuracy are severely affected by the labelling and training of data. To address this, this paper proposed a novel hybrid deep convolutional neural network method combining an Inception module and a Squeeze-and-Excitation ResNet block (SR-block), namely ISR-CNN. The Inception module can automatically extract multi-scale features of cutting force signal to enrich the feature map. The SR-block can assign weights to different feature channels, thus suppressing useless feature maps and improving the model accuracy. Meanwhile, the introduction of SR-block also reduces the risk of gradient disappearance and speeds up the training of network. The generalisation and accuracy of the model is guaranteed by combining the two modules without training with transition state data. Milling tests were carried out on a wedge-shaped workpiece using different cutting parameters and tool overhang lengths to verify the accuracy and generalisability of the proposed method. The results showed that the proposed method outperforms other methods by achieving classification accuracy of on the validation and test sets 100% and 97.8%, respectively. In comparison to existing methods, the proposed method can correctly identify each machining state, including the transition states. Furthermore, the proposed method identifies the onset of chatter earlier than other methods, which is beneficial for chatter suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rengar完成签到,获得积分10
5秒前
6秒前
劳健龙完成签到 ,获得积分10
7秒前
九日橙完成签到 ,获得积分10
7秒前
14秒前
14秒前
fafafa发布了新的文献求助10
17秒前
大个应助biye采纳,获得50
20秒前
凯旋预言完成签到 ,获得积分10
21秒前
22秒前
Hello应助包李采纳,获得10
24秒前
24秒前
25秒前
南充市第一中学完成签到,获得积分10
27秒前
33秒前
37秒前
38秒前
holmes完成签到 ,获得积分10
41秒前
42秒前
hayden完成签到 ,获得积分10
47秒前
47秒前
二十八画生完成签到 ,获得积分10
47秒前
深海鳕鱼子完成签到,获得积分20
50秒前
52秒前
54秒前
一二三关注了科研通微信公众号
56秒前
57秒前
58秒前
Freedom_1996完成签到,获得积分10
58秒前
1分钟前
雪白傲蕾发布了新的文献求助10
1分钟前
1分钟前
科目三应助偏偏雨渐渐采纳,获得10
1分钟前
阔达静曼完成签到 ,获得积分10
1分钟前
陈补天完成签到 ,获得积分10
1分钟前
1分钟前
一二三发布了新的文献求助20
1分钟前
十二平均律完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916538
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920240
捐赠科研通 3189405
什么是DOI,文献DOI怎么找? 1762945
邀请新用户注册赠送积分活动 853194
科研通“疑难数据库(出版商)”最低求助积分说明 793722