Predicting functional outcomes of patients with spontaneous intracerebral hemorrhage based on explainable machine learning models: a multicenter retrospective study

脑出血 多中心研究 回顾性队列研究 医学 自发性脑出血 内科学 蛛网膜下腔出血 随机对照试验
作者
Bin Pan,Fengda Li,Chuanghong Liu,Zeyi Li,Chengfa Sun,Kaijian Xia,Hong Xu,Gang Kong,Longyuan Gu,Kai-Yuan Cheng
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:15 被引量:1
标识
DOI:10.3389/fneur.2024.1494934
摘要

Spontaneous intracerebral hemorrhage (SICH) is the second most common cause of cerebrovascular disease after ischemic stroke, with high mortality and disability rates, imposing a significant economic burden on families and society. This retrospective study aimed to develop and evaluate an interpretable machine learning model to predict functional outcomes 3 months after SICH. A retrospective analysis was conducted on clinical data from 380 patients with SICH who were hospitalized at three different centers between June 2020 and June 2023. Seventy percent of the samples were randomly selected as the training set, while the remaining 30% were used as the validation set. Univariate analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Pearson correlation analysis were used to screen clinical variables. The selected variables were then incorporated into five machine learning models: complementary naive bayes (CNB), support vector machine (SVM), gaussian naive bayes (GNB), multilayer perceptron (MLP), and extreme gradient boosting (XGB), to assess their performance. Additionally, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model, and global and individual interpretive analyses were conducted using importance ranking and Shapley additive explanations (SHAP). Among the 380 patients, 95 ultimately had poor prognostic outcomes. In the validation set, the AUC values for CNB, SVM, GNB, MLP, and XGB models were 0.899 (0.816-0.979), 0.916 (0.847-0.982), 0.730 (0.602-0.857), 0.913 (0.834-0.986), and 0.969 (0.937-0.998), respectively. Therefore, the XGB model performed the best among the five algorithms. SHAP analysis revealed that the GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels were the most important variables for poor prognosis. The XGB model developed in this study can effectively predict the risk of poor prognosis in patients with SICH, helping clinicians make personalized and rational clinical decisions. Prognostic risk in patients with SICH is closely associated with GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
球球球完成签到,获得积分10
1秒前
3秒前
绿兔子完成签到,获得积分10
4秒前
十三完成签到 ,获得积分10
4秒前
5秒前
球球球发布了新的文献求助10
5秒前
丘比特应助活力篮球采纳,获得10
6秒前
6秒前
7秒前
8秒前
悦耳玲完成签到 ,获得积分10
8秒前
9秒前
Huayan发布了新的文献求助10
9秒前
10秒前
11秒前
小二郎应助hygge采纳,获得10
11秒前
遇上就这样吧应助小兵采纳,获得10
12秒前
浮游应助李开心呀采纳,获得10
12秒前
12秒前
渡星河发布了新的文献求助10
13秒前
14秒前
yuzhecheng发布了新的文献求助10
15秒前
解文哲完成签到,获得积分20
17秒前
英姑应助muse8采纳,获得10
19秒前
lllllll发布了新的文献求助10
19秒前
渡星河完成签到,获得积分10
20秒前
21秒前
21秒前
852应助风风是枫枫采纳,获得10
22秒前
bkagyin应助Huayan采纳,获得10
23秒前
慕青应助alex采纳,获得10
25秒前
26秒前
华仔应助枫叶采纳,获得10
28秒前
yjwang发布了新的文献求助10
28秒前
鳗鱼匕发布了新的文献求助10
30秒前
无极微光应助月军采纳,获得10
31秒前
暴躁的从露完成签到,获得积分10
34秒前
1234完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784769
求助须知:如何正确求助?哪些是违规求助? 4111889
关于积分的说明 12720900
捐赠科研通 3836636
什么是DOI,文献DOI怎么找? 2115392
邀请新用户注册赠送积分活动 1138391
关于科研通互助平台的介绍 1024456