A distributed training framework for abnormal sound detection in industrial devices: aggregation strategies and performance analysis

计算机科学 分布式学习 保护 可靠性(半导体) 联合学习 人工智能 分布式计算 心理学 教育学 量子力学 医学 物理 护理部 功率(物理)
作者
Rui Yang,Kunpeng Wang,Xinrong Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ada6f2
摘要

Abstract In today's digital and networked industrial landscape, the detection of abnormal sounds in device has emerged as a vital aspect for guaranteeing the normal operation of industrial machinery. Nevertheless, traditional centralized training approaches demand substantial amounts of audio data, imposing considerable burdens on data storage and transmission, and concurrently presenting obstacles to data privacy and security. Federated learning, as a distributed machine learning paradigm, enables model training with local data from each client without sharing the original data, thereby effectively safeguarding data privacy. Hence, in this study, we propose a distributed training framework based on federated training, which enables multiple clients to collaboratively train an abnormal sound detection model, thereby mitigating the risk of data privacy exposure. In the distributed training framework, each client possesses data from different types of device or various machines within the same device type, posing significant challenges for distributed training. To overcome this, we devised two client device distribution scenarios and proposed aggregation strategies based on client sample size, model performance, and domain shift among clients. Additionally, we introduced a Sample-Performance-Shift (SPS) aggregation strategy to ensure robust model performance across diverse device scenarios in industrial settings.
The proposed methods were evaluated on the DCASE 2020 Challenge Task 2 dataset.
Experimental results demonstrate that the SPS aggregation strategy enhances the accuracy and reliability of abnormal sound detection for industrial device within the distributed training framework while simultaneously reducing the risk of data privacy leakage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李子墨完成签到,获得积分10
1秒前
王娅楠完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
漫溢阳光发布了新的文献求助10
5秒前
5秒前
7秒前
11秒前
搜集达人应助感动归尘采纳,获得10
12秒前
12秒前
chen666完成签到,获得积分10
12秒前
李十一发布了新的文献求助10
14秒前
15秒前
17秒前
AsterHe发布了新的文献求助10
17秒前
研友_VZG7GZ应助qingshuizhiche采纳,获得10
18秒前
19秒前
xiaogu完成签到,获得积分10
19秒前
苏楠发布了新的文献求助10
22秒前
所所应助听话的如豹采纳,获得20
22秒前
万事顺遂发布了新的文献求助30
24秒前
26秒前
27秒前
31秒前
支半雪发布了新的文献求助10
31秒前
汉堡包应助TTTT采纳,获得10
31秒前
直播员完成签到 ,获得积分10
32秒前
夷则七发布了新的文献求助10
32秒前
33秒前
a极完成签到,获得积分10
33秒前
彭于晏应助种地小能手~采纳,获得10
33秒前
救救我把完成签到,获得积分20
33秒前
Jasper应助大方怀亦采纳,获得10
33秒前
搜集达人应助DaiTing采纳,获得10
35秒前
36秒前
明年发布了新的文献求助10
37秒前
支半雪完成签到,获得积分10
37秒前
救救我把发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549170
求助须知:如何正确求助?哪些是违规求助? 3979739
关于积分的说明 12321560
捐赠科研通 3648430
什么是DOI,文献DOI怎么找? 2009324
邀请新用户注册赠送积分活动 1044765
科研通“疑难数据库(出版商)”最低求助积分说明 933251