Tower crane safety technologies: A synthesis of academic research and industry insights

塔式起重机 塔楼 象牙塔 工程类 制造工程 建筑工程 工程管理 建筑工程 建筑业 业务 土木工程 政治学 结构工程 法学
作者
Ali Hassan Ali,Tarek Zayed,Roy Dong Wang,Matthew Yau Shun Kit
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:163: 105429-105429 被引量:6
标识
DOI:10.1016/j.autcon.2024.105429
摘要

Tower cranes (TCs) are vital equipment highly sought after on construction sites due to their efficiency in handling and lifting heavy loads. Nevertheless, the use of TCs on construction sites is riddled with significant safety issues, resulting in numerous accidents across the globe. This study uniquely focuses on the emerging tower crane safety technologies (TCST) field and makes vital contributions by investigating and analyzing TCST research. It aims to explore knowledge gaps and propose future research directions through a systematic review. The uniqueness of this study is its comprehensive examination of TCST, which encompasses not only academic research but also industrial technologies and products. TCST has been categorized based on their purposes and specific aspects of crane management, leading to four key categories: (1) proactive preconstruction crane management technologies; (2) monitoring technologies during construction; (3) anti-collision technologies during construction; and (4) stability control technologies during construction. This study makes a threefold contribution. First, it identifies six crucial knowledge gaps, three in academia and three in the industrial sector. These gaps relate to data completeness, data scope, real-world application, post-construction dismantling, accuracy and data reliability, and data security. Second, it outlines future research opportunities in both academic and industrial contexts, providing a clear path to address these gaps and improve tower crane (TC) operation safety and efficiency. Lastly, it delivers valuable insights to industry practitioners by presenting the latest TCST applications in real-world scenarios, thereby promoting safer and more effective construction practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Max采纳,获得10
刚刚
白樱恋曲完成签到 ,获得积分10
2秒前
dd发布了新的文献求助10
3秒前
NexusExplorer应助高高的魔镜采纳,获得10
4秒前
4秒前
5秒前
体贴凤灵发布了新的文献求助10
8秒前
hkh发布了新的文献求助10
9秒前
冰魂应助科研通管家采纳,获得150
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
酷波er应助Bin_Liu采纳,获得10
11秒前
噜噜噜完成签到,获得积分10
12秒前
清新的惊蛰完成签到,获得积分10
13秒前
13秒前
qiao应助LLL采纳,获得10
14秒前
14秒前
思源应助hkh采纳,获得10
15秒前
体贴凤灵完成签到,获得积分20
16秒前
冷艳的雁玉完成签到,获得积分10
16秒前
19秒前
19秒前
KKK研发布了新的文献求助10
19秒前
22秒前
23秒前
Max发布了新的文献求助10
24秒前
24秒前
lizhiqian2024发布了新的文献求助10
25秒前
在水一方应助Leolefroy采纳,获得10
27秒前
饱满的凡儿完成签到,获得积分10
28秒前
luo应助刻苦的平松采纳,获得20
29秒前
31秒前
喜之郎完成签到,获得积分10
33秒前
Max完成签到,获得积分10
33秒前
七一安发布了新的文献求助10
36秒前
香蕉觅云应助周浩宇采纳,获得10
40秒前
zhang完成签到,获得积分10
41秒前
田様应助七七采纳,获得10
42秒前
科研通AI5应助mujin采纳,获得30
44秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804