已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-stage particle swarm optimization with dual-indicator fusion ranking for multi-objective problems

粒子群优化 排名(信息检索) 对偶(语法数字) 数学优化 计算机科学 融合 阶段(地层学) 多群优化 数学 人工智能 生物 艺术 古生物学 语言学 哲学 文学类
作者
Qing Xu,Yuhao Chen,Cisong Shi,Junhong Huang,Wei Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:: 121032-121032
标识
DOI:10.1016/j.ins.2024.121032
摘要

Elite solutions guiding population evolution are often used as one of main ideas to improve the performance of multi-objective particle swarm optimization (MOPSO). However, in most research work, sole Pareto dominance criterion is often used to evaluate solutions. This sole criterion may easily cause some problems, such as the premature convergence. In this study, we propose an MOPSO variant with dual-indicator fusion ranking (TPSO-DF), to evaluate elite solutions and to guide search without sacrificing diversity. In TPSO-DF, two indicators are introduced by using the convergence and diversity information, respectively. Both indicators are then fusioned in a ranking measure to focus on valuable information and to filter out solutions with these valuable information. Meanwhile, an adaptive global leader selection strategy is introduced to take full advantage of valuable information and to guide population evolution toward the optimal direction. As another contribution of this study, a two-stage hybrid mutation strategy is designed by utilizing the valuable information differently in different evolutionary states of the algorithm to enhance performance. Compared to eight representative multi-objective evolutionary algorithms, the performance of TPSO-DF is validated by extensive experiments on ZDT and DTLZ test suites, as well as one practical problem. Experimental results show that TPSO-DF can achieve competitive performance on most of the test functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
1秒前
诸葛御风应助科研通管家采纳,获得50
1秒前
Eastmush应助科研通管家采纳,获得10
1秒前
肚子幽伤完成签到,获得积分10
2秒前
zhul完成签到,获得积分10
2秒前
狂野的含烟完成签到 ,获得积分10
3秒前
小丸子完成签到 ,获得积分10
5秒前
木又完成签到 ,获得积分10
5秒前
Percy完成签到 ,获得积分10
7秒前
科研通AI5应助yyywwwddd333采纳,获得20
9秒前
10秒前
12秒前
风筝鱼完成签到 ,获得积分10
12秒前
李健的粉丝团团长应助饼z采纳,获得10
13秒前
lyr关闭了lyr文献求助
14秒前
彭于晏应助fly采纳,获得10
15秒前
123发布了新的文献求助10
15秒前
李斌关注了科研通微信公众号
15秒前
后陡门爱神完成签到 ,获得积分10
15秒前
胡图图发布了新的文献求助10
16秒前
李爱国应助lijiuyi采纳,获得10
16秒前
17秒前
Anna完成签到 ,获得积分10
21秒前
21秒前
一二完成签到 ,获得积分10
22秒前
韩凡发布了新的文献求助10
22秒前
24秒前
跳跃太清完成签到 ,获得积分10
26秒前
fly发布了新的文献求助10
30秒前
30秒前
叨叨不叨叨叨叨叨完成签到,获得积分10
30秒前
Charles完成签到,获得积分10
31秒前
Xu完成签到 ,获得积分10
34秒前
ryanfeng完成签到,获得积分0
38秒前
492357816完成签到,获得积分10
40秒前
40秒前
43秒前
头孢西丁完成签到 ,获得积分10
43秒前
细心的如天完成签到 ,获得积分0
43秒前
lijiuyi发布了新的文献求助10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800821
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329064
捐赠科研通 3062766
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807425
科研通“疑难数据库(出版商)”最低求助积分说明 763702