肺病
医学影像学
真菌病
医学物理学
人工智能
曲菌病
计算机科学
肺
病理
数据科学
放射科
医学
免疫学
皮肤病科
内科学
作者
Elsa D. Angelini,Anand Shah
出处
期刊:Mycopathologia
[Springer Science+Business Media]
日期:2021-04-11
卷期号:186 (5): 733-737
被引量:12
标识
DOI:10.1007/s11046-021-00546-0
摘要
Abstract This positioning paper aims to discuss current challenges and opportunities for artificial intelligence (AI) in fungal lung disease, with a focus on chronic pulmonary aspergillosis and some supporting proof-of-concept results using lung imaging. Given the high uncertainty in fungal infection diagnosis and analyzing treatment response, AI could potentially have an impactful role; however, developing imaging-based machine learning raises several specific challenges. We discuss recommendations to engage the medical community in essential first steps towards fungal infection AI with gathering dedicated imaging registries, linking with non-imaging data and harmonizing image-finding annotations.
科研通智能强力驱动
Strongly Powered by AbleSci AI