Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 经济 管理
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sci来来来发布了新的文献求助30
2秒前
5秒前
1yyyyyy发布了新的文献求助10
5秒前
Jasper应助湫栗采纳,获得10
9秒前
可乐加冰发布了新的文献求助10
9秒前
在水一方应助活力的尔蓉采纳,获得10
10秒前
合适的自行车完成签到,获得积分10
10秒前
比大家发布了新的文献求助10
11秒前
Orange应助sci来来来采纳,获得10
13秒前
zh发布了新的文献求助10
14秒前
科目三应助心灵美咖啡豆采纳,获得10
17秒前
17秒前
科研通AI2S应助活力的尔蓉采纳,获得10
19秒前
湫栗发布了新的文献求助10
22秒前
sci来来来完成签到,获得积分10
22秒前
CipherSage应助AlexLee采纳,获得10
23秒前
善学以致用应助可乐加冰采纳,获得10
24秒前
28秒前
所所应助活力的尔蓉采纳,获得10
30秒前
LHP完成签到,获得积分10
32秒前
张嘟嘟完成签到,获得积分10
32秒前
小二郎应助欣慰的八宝粥采纳,获得10
32秒前
沉积岩完成签到,获得积分10
34秒前
万能图书馆应助瑾瑾采纳,获得10
34秒前
ypppp完成签到,获得积分20
37秒前
37秒前
39秒前
springlrt完成签到,获得积分10
39秒前
独特的秋完成签到 ,获得积分10
39秒前
科研通AI5应助liuyulu615采纳,获得10
39秒前
hyl完成签到,获得积分10
40秒前
洋芋饭应助ypppp采纳,获得10
41秒前
41秒前
凤梨毛峰三分糖完成签到 ,获得积分10
42秒前
rupy发布了新的文献求助10
43秒前
小二郎应助活力的尔蓉采纳,获得10
43秒前
springlrt发布了新的文献求助10
43秒前
Orange应助湫栗采纳,获得10
45秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778882
求助须知:如何正确求助?哪些是违规求助? 3324413
关于积分的说明 10218351
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798570
科研通“疑难数据库(出版商)”最低求助积分说明 758440