A review of deep learning used in the hyperspectral image analysis for agriculture

高光谱成像 计算机科学 人工智能 深度学习 特征(语言学) 机器学习 模式识别(心理学) 遥感 地理 语言学 哲学
作者
Chunying Wang,Baohua Liu,Lipeng Liu,Yanjun Zhu,Jialin Hou,Ping Liu,Xiang Li
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:54 (7): 5205-5253 被引量:194
标识
DOI:10.1007/s10462-021-10018-y
摘要

Hyperspectral imaging is a non-destructive, nonpolluting, and fast technology, which can capture up to several hundred images of different wavelengths and offer relevant spectral signatures. Hyperspectral imaging technology has achieved breakthroughs in the acquisition of agricultural information and the detection of external or internal quality attributes of the agricultural product. Deep learning techniques have boosted the performance of hyperspectral image analysis. Compared with traditional machine learning, deep learning architectures exploit both spatial and spectral information of hyperspectral image analysis. To scrutinize thoroughly the current efforts, provide insights, and identify potential research directions on deep learning for hyperspectral image analysis in agriculture, this paper presents a systematic and comprehensive review. Firstly, its applications in agriculture are summarized, include ripeness and component prediction, different classification themes, and plant disease detection. Then, the recent achievements are reviewed in hyperspectral image analysis from the aspects of the deep learning models and the feature networks. Finally, the existing challenges of hyperspectral image analysis based on deep learning are summarized and the prospects of future works are put forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻瓜小韩发布了新的文献求助10
刚刚
1秒前
1秒前
张张发布了新的文献求助10
1秒前
木影忆发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
3秒前
3秒前
迅速友容完成签到 ,获得积分10
3秒前
TT完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
accept应助Song采纳,获得10
6秒前
可夫司机发布了新的文献求助10
6秒前
开心的小谢完成签到,获得积分10
8秒前
8秒前
8秒前
小蘑菇应助shYnEss采纳,获得10
8秒前
11完成签到 ,获得积分10
8秒前
谦让新竹发布了新的文献求助10
9秒前
DR完成签到,获得积分10
9秒前
9秒前
9秒前
照九州完成签到,获得积分10
9秒前
元谷雪发布了新的文献求助10
10秒前
10秒前
10秒前
言不由衷发布了新的文献求助30
10秒前
这瓜不卖发布了新的文献求助10
10秒前
Hello应助剪影改采纳,获得10
10秒前
jnuzhou发布了新的文献求助10
11秒前
科研通AI5应助liuyong6413采纳,获得10
12秒前
13秒前
不缺人YYDS完成签到,获得积分10
13秒前
白衣完成签到,获得积分10
14秒前
ZY完成签到,获得积分10
14秒前
tangpc发布了新的文献求助10
14秒前
14秒前
Ava应助PAD采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790659
求助须知:如何正确求助?哪些是违规求助? 3335459
关于积分的说明 10274985
捐赠科研通 3051977
什么是DOI,文献DOI怎么找? 1674949
邀请新用户注册赠送积分活动 802929
科研通“疑难数据库(出版商)”最低求助积分说明 761001