A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems

计算机科学 断层(地质) 卷积神经网络 人工智能 特征提取 特征(语言学) 滑动窗口协议 噪音(视频) 深度学习 人工神经网络 模式识别(心理学) 机器学习 数据挖掘 窗口(计算) 图像(数学) 哲学 地质学 地震学 操作系统 语言学
作者
Ting Huang,Qiang Zhang,Xiaoan Tang,Shuangyao Zhao,Xiaonong Lu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:55 (2): 1289-1315 被引量:216
标识
DOI:10.1007/s10462-021-09993-z
摘要

Fault diagnosis plays an important role in actual production activities. As large amounts of data can be collected efficiently and economically, data-driven methods based on deep learning have achieved remarkable results of fault diagnosis of complex systems due to their superiority in feature extraction. However, existing techniques rarely consider time delay of occurrence of faults, which affects the performance of fault diagnosis. In this paper, by synthetically considering feature extraction and time delay of occurrence of faults, we propose a novel fault diagnosis method that consists of two parts, namely, sliding window processing and CNN-LSTM model based on a combination of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM). Firstly, samples obtained from multivariate time series by the sliding window processing integrates feature information and time delay information. Then, the obtained samples are fed into the proposed CNN-LSTM model including CNN layers and LSTM layers. The CNN layers perform feature learning without relying on prior knowledge. Time delay information is captured with the use of the LSTM layers. The fault diagnosis of the Tennessee Eastman chemical process is addressed, and it is verified that the predictive accuracy and noise sensitivity of fault diagnosis can be greatly improved when the proposed method is applied. Comparisons with five existing fault diagnosis methods show the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西海岸的风完成签到 ,获得积分10
2秒前
无月即明发布了新的文献求助10
4秒前
5秒前
8秒前
Curry完成签到 ,获得积分10
14秒前
所所应助陈陈陈采纳,获得10
14秒前
14秒前
天天向上完成签到,获得积分10
14秒前
666完成签到 ,获得积分20
15秒前
烟花应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
17秒前
19秒前
Hello应助luqi采纳,获得10
20秒前
20秒前
21秒前
az发布了新的文献求助10
22秒前
123完成签到,获得积分10
22秒前
在水一方应助小么小采纳,获得10
23秒前
25秒前
陈陈陈发布了新的文献求助10
25秒前
科研通AI5应助dd采纳,获得10
26秒前
领导范儿应助才下眉头采纳,获得10
26秒前
26秒前
28秒前
30秒前
31秒前
科研发布了新的文献求助10
31秒前
luqi发布了新的文献求助10
33秒前
34秒前
35秒前
shijin135发布了新的文献求助10
36秒前
dd发布了新的文献求助10
37秒前
38秒前
Andrew发布了新的文献求助10
39秒前
才下眉头发布了新的文献求助10
40秒前
佰斯特威发布了新的文献求助10
40秒前
LiOH完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784198
求助须知:如何正确求助?哪些是违规求助? 4111669
关于积分的说明 12720448
捐赠科研通 3836302
什么是DOI,文献DOI怎么找? 2115309
邀请新用户注册赠送积分活动 1138330
关于科研通互助平台的介绍 1024229