饥荒
医学
胎儿
逻辑回归
儿科
怀孕
内科学
政治学
遗传学
生物
法学
作者
Yueyue You,Yan Song,Mohan Wang,Lili Zhang,Wei Bai,Wenbo Yu,Yewei Yu,Changgui Kou
出处
期刊:PubMed
日期:2020-01-10
卷期号:41 (1): 74-78
标识
DOI:10.3760/cma.j.issn.0254-6450.2020.01.014
摘要
Objective: To investigate the relationship between exposure to famine in fetus and infant period and the risks for hypertension in adulthood. Methods: A total of 5 960 participants born between 1956 and 1965 were included in the study and were divided into unexposed group (1963-1965), fetal exposed group (1959-1961), early- childhood exposed group (1956-1958) and transitional group (1962). Logistic regression model was used to explore the association between famine exposure in early life and the risk for hypertension in adulthood. Results: Both the fetal exposure and the early-childhood exposure were the risk factors for hypertension in adulthood (OR=1.249, 95%CI: 1.049-1.486 and OR=1.360, 95%CI: 1.102-1.679). Meanwhile, in rural area, compared with unexposed group, the fetal exposure (OR=1.401, 95%CI: 1.091-1.798) and the early-childhood exposure (OR=1.460, 95%CI: 1.145-1.862) were also associated with a greater risk of hypertension in adulthood. In addition, fetal exposure and early-childhood exposure to famine in women were associated with 36.0% and 31.9% increased risks for hypertension (95%CI: 7.8%-71.7% and 95%CI: 4.8%-66.0%) according to the stratified analysis. Conclusion: Fetal exposure to famine might increase the risk for hypertension in adulthood.目的: 探讨胎儿和婴儿时期饥荒暴露与成年后高血压患病风险之间的关系。 方法: 基于2012年吉林省慢性病调查数据,选取1956-1965年出生的5 960名研究对象,分为未暴露(1963-1965年)、胎儿期暴露(1959-1961年)、儿童早期暴露(1956-1958年)和过渡(1962年)4组。采用logistic回归模型探讨早期饥荒暴露与成年期高血压患病风险之间的关系。 结果: 胎儿期暴露(OR=1.249,95%CI:1.049~1.486)和儿童早期暴露(OR=1.360,95%CI:1.102~1.679)均是高血压的危险因素。在农村地区,与未暴露相比,胎儿期暴露(OR=1.401,95%CI:1.091~1.798)和儿童早期暴露(OR=1.460,95%CI:1.145~1.862)增加了其成年后高血压的患病危险。女性胎儿期暴露于饥荒中高血压风险增加36.0%(95%CI:7.8%~71.7%),女性儿童早期暴露于饥荒高血压风险增加31.9%(95%CI:4.8%~66.0%)。 结论: 胎儿期暴露于饥荒中可能会增加成年后高血压的患病风险。因此,生命早期均衡营养对预防成年后高血压的发生有重要意义。.
科研通智能强力驱动
Strongly Powered by AbleSci AI