已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CondenseUNet: a memory-efficient condensely-connected architecture for bi-ventricular blood pool and myocardium segmentation

分割 计算机科学 卷积神经网络 人工智能 图像分割 心室 增采样 医学影像学 磁共振成像 深度学习 模式识别(心理学) 计算机视觉 医学 心脏病学 放射科 图像(数学)
作者
S. M. Kamrul Hasan,Cristian A. Linte
标识
DOI:10.1117/12.2550640
摘要

With the advent of Cardiac Cine Magnetic Resonance (CMR) Imaging, there has been a paradigm shift in medical technology, thanks to its capability of imaging different structures within the heart without ionizing radiation. However, it is very challenging to conduct pre-operative planning of minimally invasive cardiac procedures without accurate segmentation and identification of the left ventricle (LV), right ventricle (RV) blood-pool, and LV-myocardium. Manual segmentation of those structures, nevertheless, is time-consuming and often prone to error and biased outcomes. Hence, automatic and computationally efficient segmentation techniques are paramount. In this work, we propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet, as well as DenseNet for ventricular blood-pool segmentation by introducing a bottleneck block and an upsampling path. Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge (ACDC) dataset using half (50%) the memory requirement of DenseNet and one-twelfth (~ 8%) of the memory requirements of U-Net, while still maintaining excellent accuracy of cardiac segmentation. We validated the framework on the ACDC dataset featuring one healthy and four pathology groups whose heart images were acquired throughout the cardiac cycle and achieved the mean dice scores of 96.78% (LV blood-pool), 93.46% (RV blood-pool) and 90.1% (LV-Myocardium). These results are promising and promote the proposed methods as a competitive tool for cardiac image segmentation and clinical parameter estimation that has the potential to provide fast and accurate results, as needed for pre-procedural planning and / or pre-operative applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不想写论文急急急关注了科研通微信公众号
1秒前
高兴1江完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
2秒前
搜集达人应助独特紫夏采纳,获得10
2秒前
刘慧鑫发布了新的文献求助10
3秒前
3秒前
01skystriker发布了新的文献求助10
3秒前
3秒前
7秒前
乱世发布了新的文献求助10
10秒前
10秒前
Jasper应助聪慧的凝海采纳,获得10
12秒前
独特紫夏发布了新的文献求助10
15秒前
17秒前
18秒前
19秒前
独特紫夏完成签到,获得积分10
20秒前
20秒前
时镜完成签到,获得积分10
20秒前
20秒前
小木林发布了新的文献求助10
24秒前
26秒前
蒋灵馨发布了新的文献求助10
27秒前
美年达完成签到 ,获得积分10
27秒前
27秒前
Akim应助卷毛v采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
31秒前
31秒前
Owen应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得30
31秒前
BowieHuang应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
烟花应助科研通管家采纳,获得20
31秒前
Asurary完成签到 ,获得积分10
31秒前
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
31秒前
32秒前
ly完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548776
求助须知:如何正确求助?哪些是违规求助? 4633988
关于积分的说明 14633429
捐赠科研通 4575623
什么是DOI,文献DOI怎么找? 2509118
邀请新用户注册赠送积分活动 1485206
关于科研通互助平台的介绍 1456237