已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply Chain

供应链 大数据 计算机科学 SPARK(编程语言) 财务 金融服务 卷积神经网络 供应链管理 业务 人工智能 数据挖掘 营销 程序设计语言
作者
Hangjun Zhou,Guang Sun,Sha Fu,Xiaoping Fan,Wangdong Jiang,Shuting Hu,Lingjiao Li
出处
期刊:Computers, materials & continua 卷期号:64 (2): 1091-1105 被引量:38
标识
DOI:10.32604/cmc.2020.09834
摘要

Supply Chain Finance (SCF) is important for improving the effectiveness of supply chain capital operations and reducing the overall management cost of a supply chain. In recent years, with the deep integration of supply chain and Internet, Big Data, Artificial Intelligence, Internet of Things, Blockchain, etc., the efficiency of supply chain financial services can be greatly promoted through building more customized risk pricing models and conducting more rigorous investment decision-making processes. However, with the rapid development of new technologies, the SCF data has been massively increased and new financial fraud behaviors or patterns are becoming more covertly scattered among normal ones. The lack of enough capability to handle the big data volumes and mitigate the financial frauds may lead to huge losses in supply chains. In this article, a distributed approach of big data mining is proposed for financial fraud detection in a supply chain, which implements the distributed deep learning model of Convolutional Neural Network (CNN) on big data infrastructure of Apache Spark and Hadoop to speed up the processing of the large dataset in parallel and reduce the processing time significantly. By training and testing on the continually updated SCF dataset, the approach can intelligently and automatically classify the massive data samples and discover the fraudulent financing behaviors, so as to enhance the financial fraud detection with high precision and recall rates, and reduce the losses of frauds in a supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjnksy完成签到,获得积分10
2秒前
Tracy发布了新的文献求助10
3秒前
吾系渣渣辉完成签到 ,获得积分10
8秒前
丘比特应助haiqi采纳,获得10
10秒前
12秒前
爱与感谢完成签到 ,获得积分10
13秒前
123123完成签到 ,获得积分10
16秒前
丁丁发布了新的文献求助10
17秒前
21秒前
21秒前
22秒前
123完成签到,获得积分10
22秒前
六沉完成签到,获得积分10
23秒前
六沉发布了新的文献求助10
26秒前
LeoBigman完成签到 ,获得积分10
29秒前
悄悄完成签到 ,获得积分10
30秒前
style完成签到,获得积分10
34秒前
佳啊完成签到 ,获得积分10
36秒前
Swear完成签到 ,获得积分10
38秒前
卡卡西的猫完成签到 ,获得积分10
39秒前
烟花应助爱与感谢采纳,获得10
39秒前
Lonala完成签到,获得积分10
42秒前
李小强完成签到,获得积分10
48秒前
西门浩宇完成签到 ,获得积分10
48秒前
星辰大海应助科研通管家采纳,获得10
48秒前
体贴的小susu完成签到,获得积分10
49秒前
crainbowc完成签到,获得积分10
52秒前
科研通AI5应助1212采纳,获得10
54秒前
57秒前
喵誉玉完成签到 ,获得积分10
58秒前
孤独尔白应助T_MC郭采纳,获得10
59秒前
59秒前
LL发布了新的文献求助10
1分钟前
黄熙轩发布了新的文献求助10
1分钟前
小白菜完成签到,获得积分10
1分钟前
小李先绅完成签到,获得积分20
1分钟前
江流有声完成签到 ,获得积分10
1分钟前
小枣完成签到 ,获得积分10
1分钟前
1分钟前
特特雷珀萨努完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336676
关于积分的说明 10281801
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457