Shedding light on “Black Box” machine learning models for predicting the reactivity of HO radicals toward organic compounds

均方误差 虚假关系 数量结构-活动关系 人工神经网络 平均绝对误差 人工智能 支持向量机 Boosting(机器学习) 梯度升压 模式识别(心理学) 反应性(心理学) 机器学习 分子描述符 集成学习 数学 生物系统 计算机科学 统计 随机森林 病理 生物 医学 替代医学
作者
Shifa Zhong,Kai Zhang,Dong Wang,Huichun Zhang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:405: 126627-126627 被引量:97
标识
DOI:10.1016/j.cej.2020.126627
摘要

Developing quantitative structure-activity relationships (QSARs) is an important approach to predicting the reactivity of HO radicals toward newly emerged organic compounds. As compared with molecular descriptors-based and the group contribution method-based QSARs, a combined molecular fingerprint-machine learning (ML) method can more quickly and accurately develop such models for a growing number of contaminants. However, it is yet unknown whether this method makes predictions by choosing meaningful structural features rather than spurious ones, which is vital for trusting the models. In this study, we developed QSAR models for the logkHO values of 1089 organic compounds in the aqueous phase by two ML algorithms—deep neural networks (DNN) and eXtreme Gradient Boosting (XGBoost), and interpreted the built models by the SHapley Additive exPlanations (SHAP) method. The results showed that for the contribution of a given structural feature to logkHO for different compounds, DNN and XGBoost treated it as a fixed and variable value, respectively. We then developed an ensemble model combining the DNN with XGBoost, which achieved satisfactory predictive performance for all three datasets: Training dataset: R-square (R2) 0.89–0.91, root-mean-squared-error (RMSE) 0.21–0.23, and mean absolute error (MAE) 0.15–0.17; Validation dataset: R2 0.63–0.78, RMSE 0.29–0.32, and MAE 0.21–0.25; and Test dataset: R2 0.60–0.71, RMSE 0.30–0.35, and MAE 0.23–0.25. The SHAP method was further used to unveil that this ensemble model made predictions on logkHO based on a correct ‘understanding’ of the impact of electron-withdrawing and -donating groups and of the reactive sites in the compounds that can be attacked by HO. This study offered some much-needed mechanistic insights into a ML-assisted environmental task, which are important for evaluating the trustworthiness of the ML-based models, further improving the models for specific applications, and leveraging the implicit knowledge the models carry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花笙米完成签到,获得积分10
刚刚
昏睡的蟠桃应助zzy采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
笨笨芯应助科研通管家采纳,获得20
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
踏实无敌应助科研通管家采纳,获得50
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
ph完成签到 ,获得积分10
3秒前
4秒前
沉静妙菡完成签到,获得积分10
4秒前
gugugu发布了新的文献求助10
6秒前
qwertnjj完成签到,获得积分10
7秒前
朱光亚发布了新的文献求助10
8秒前
9秒前
冷傲的道罡完成签到,获得积分10
10秒前
科研通AI5应助wuxunxun2015采纳,获得10
10秒前
13秒前
我的名字是山脉完成签到,获得积分10
15秒前
Yogita完成签到,获得积分10
18秒前
咸鱼想翻身完成签到,获得积分10
19秒前
如果完成签到 ,获得积分10
20秒前
21秒前
24秒前
25岁进厂人士完成签到,获得积分10
24秒前
Star完成签到 ,获得积分10
24秒前
NexusExplorer应助多情的安阳采纳,获得10
25秒前
PrayOne完成签到 ,获得积分10
25秒前
DQY完成签到,获得积分10
25秒前
27秒前
冯昊发布了新的文献求助10
28秒前
龍fei完成签到,获得积分10
28秒前
阿南完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751