Shedding light on “Black Box” machine learning models for predicting the reactivity of HO radicals toward organic compounds

均方误差 虚假关系 数量结构-活动关系 人工神经网络 平均绝对误差 人工智能 支持向量机 Boosting(机器学习) 梯度升压 模式识别(心理学) 反应性(心理学) 机器学习 分子描述符 集成学习 数学 生物系统 计算机科学 统计 随机森林 病理 生物 替代医学 医学
作者
Shifa Zhong,Kai Zhang,Dong Wang,Huichun Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:405: 126627-126627 被引量:129
标识
DOI:10.1016/j.cej.2020.126627
摘要

Developing quantitative structure-activity relationships (QSARs) is an important approach to predicting the reactivity of HO radicals toward newly emerged organic compounds. As compared with molecular descriptors-based and the group contribution method-based QSARs, a combined molecular fingerprint-machine learning (ML) method can more quickly and accurately develop such models for a growing number of contaminants. However, it is yet unknown whether this method makes predictions by choosing meaningful structural features rather than spurious ones, which is vital for trusting the models. In this study, we developed QSAR models for the logkHO values of 1089 organic compounds in the aqueous phase by two ML algorithms—deep neural networks (DNN) and eXtreme Gradient Boosting (XGBoost), and interpreted the built models by the SHapley Additive exPlanations (SHAP) method. The results showed that for the contribution of a given structural feature to logkHO for different compounds, DNN and XGBoost treated it as a fixed and variable value, respectively. We then developed an ensemble model combining the DNN with XGBoost, which achieved satisfactory predictive performance for all three datasets: Training dataset: R-square (R2) 0.89–0.91, root-mean-squared-error (RMSE) 0.21–0.23, and mean absolute error (MAE) 0.15–0.17; Validation dataset: R2 0.63–0.78, RMSE 0.29–0.32, and MAE 0.21–0.25; and Test dataset: R2 0.60–0.71, RMSE 0.30–0.35, and MAE 0.23–0.25. The SHAP method was further used to unveil that this ensemble model made predictions on logkHO based on a correct ‘understanding’ of the impact of electron-withdrawing and -donating groups and of the reactive sites in the compounds that can be attacked by HO. This study offered some much-needed mechanistic insights into a ML-assisted environmental task, which are important for evaluating the trustworthiness of the ML-based models, further improving the models for specific applications, and leveraging the implicit knowledge the models carry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐亭下完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
免疫线李亚楠完成签到,获得积分10
3秒前
大模型应助Hui采纳,获得10
3秒前
4秒前
无花果应助ChiariRay采纳,获得10
4秒前
4秒前
5秒前
XXC发布了新的文献求助10
5秒前
浮游应助111采纳,获得10
5秒前
默默完成签到,获得积分10
5秒前
繁缕发布了新的文献求助10
5秒前
从容老四发布了新的文献求助10
6秒前
理想国的过客完成签到,获得积分10
6秒前
7秒前
lvzhechen发布了新的文献求助10
7秒前
gao发布了新的文献求助10
8秒前
Enyu完成签到 ,获得积分10
8秒前
李李李发布了新的文献求助10
8秒前
小兔子乖乖完成签到,获得积分10
8秒前
9秒前
JamesPei应助xun采纳,获得10
9秒前
柚米完成签到,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
orixero应助dreamy4869采纳,获得10
10秒前
羊咩咩完成签到,获得积分10
11秒前
缓慢冰菱发布了新的文献求助10
11秒前
11秒前
暮冬完成签到 ,获得积分10
11秒前
科研通AI6应助分隔符采纳,获得10
11秒前
11秒前
冲个SCIENCE完成签到,获得积分10
12秒前
12秒前
大气寻真完成签到 ,获得积分10
13秒前
羊咩咩发布了新的文献求助10
13秒前
小林发布了新的文献求助20
13秒前
诚心的以松完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409647
求助须知:如何正确求助?哪些是违规求助? 4527242
关于积分的说明 14109820
捐赠科研通 4441721
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429576
关于科研通互助平台的介绍 1407723