A Coarse-to-Fine Multi-stream Hybrid Deraining Network for Single Image Deraining

计算机科学 路径(计算) 块(置换群论) 残余物 过程(计算) 人工智能 任务(项目管理) 像素 对偶(语法数字) 模式识别(心理学) 计算机视觉 算法 数学 工程类 艺术 几何学 文学类 程序设计语言 操作系统 系统工程
作者
Yanyan Wei,Zhao Zhang,Haijun Zhang,Richang Hong,Meng Wang
标识
DOI:10.1109/icdm.2019.00073
摘要

Single image deraining task is still a very challenging task due to its ill-posed nature in reality. Recently, researchers have tried to fix this issue by training the CNN-based end-to-end models, but they still cannot extract the negative rain streaks from rainy images precisely, which usually leads to an over de-rained or under de-rained result. To handle this issue, this paper proposes a new coarse-to-fine single image deraining framework termed Multi-stream Hybrid Deraining Network (shortly, MH-DerainNet). To obtain the negative rain streaks during training process more accurately, we present a new module named dual path residual dense block, i.e., Residual path and Dense path. The Residual path is used to reuse com-mon features from the previous layers while the Dense path can explore new features. In addition, to concatenate different scaled features, we also apply the idea of multi-stream with shortcuts between cascaded dual path residual dense block based streams. To obtain more distinct derained images, we combine the SSIM loss and perceptual loss to preserve the per-pixel similarity as well as preserving the global structures so that the deraining result is more accurate. Extensive experi-ments on both synthetic and real rainy images demonstrate that our MH-DerainNet can deliver significant improvements over several recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Eurus发布了新的文献求助10
刚刚
刚刚
缥缈南露发布了新的文献求助10
刚刚
1秒前
怡然凝云发布了新的文献求助10
1秒前
4秒前
大有阳光发布了新的文献求助10
4秒前
研友_VZG7GZ应助Run采纳,获得10
4秒前
5秒前
wewawj发布了新的文献求助10
5秒前
Jasper应助缥缈南露采纳,获得10
5秒前
yoo71发布了新的文献求助30
6秒前
十三四发布了新的文献求助10
7秒前
7秒前
7秒前
Maestro_S应助易安采纳,获得10
8秒前
可爱的函函应助甜蜜弱采纳,获得10
9秒前
pumpkin完成签到,获得积分10
9秒前
碧蓝的海豚完成签到,获得积分10
9秒前
9秒前
10秒前
缥缈南露完成签到,获得积分10
10秒前
SR发布了新的文献求助10
11秒前
Y30251320完成签到,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
风清扬发布了新的文献求助10
12秒前
彭于晏应助科研通管家采纳,获得10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
Leo应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
ccm应助科研通管家采纳,获得10
13秒前
xxfsx应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492643
求助须知:如何正确求助?哪些是违规求助? 4590684
关于积分的说明 14431568
捐赠科研通 4523147
什么是DOI,文献DOI怎么找? 2478188
邀请新用户注册赠送积分活动 1463213
关于科研通互助平台的介绍 1435947