Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries

材料科学 阳极 阴极 电解质 纳米技术 快离子导体 离子电导率 储能 锂(药物) 涂层 化学工程 电极 工程类 电气工程 化学 内分泌学 物理 物理化学 功率(物理) 医学 量子力学
作者
Yajun Ding,Yuejiao Li,Min Wu,Hong Zhao,Decheng Li,Zhong‐Shuai Wu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:31: 470-491 被引量:44
标识
DOI:10.1016/j.ensm.2020.07.041
摘要

Li-O2 batteries have drawn considerable interests owing to their highest theoretical energy density among the reported rechargeable batteries. However, Li-O2 batteries are facing severe challenges in the low round-trip efficiency and poor cycling stability. Recently, two-dimensional (2D) materials with large surface area, tunable electrical/ionic conductivity, exceptional chemical and mechanical stability are emerging as a competitive candidate for Li-O2 batteries. Herein, this review summarizes the key challenges and recent advances of 2D materials, serving as multi-functional roles in the design of advanced cathodes, development of solid-state electrolytes and separators, and protection of lithium anodes for high-energy-density nonaqueous Li-O2 batteries. Firstly, the current status is introduced to highlight the significance and bottlenecks of Li-O2 batteries. Second, the state-of-the-art 2D materials are exampled to illustrate their key roles in cathodes, electrolytes, separators and anodes. Specifically, 2D materials with high electrical conductivity, hierarchically porous structure and enriched functionalities are very promising for design of ideal cathodes that can significantly facilitate the transfer of electrons and mass, offer enough accommodation space for discharge products. Moreover, 2D materials modified separators and solid-state electrolytes with superionic conduction and outstanding stability can greatly boost ionic mobility and prolong the cycling life. Besides, nanostructure engineering of stable solid electrolyte interface film and Li metal anode using 2D materials as coating layers and lithophilic hosts with high chemical stability and mechanical strength can effectively suppress the growth of Li dendrites during plating/stripping. Finally, the future challenges and development directions of Li-O2 batteries based on advanced 2D materials are briefly discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向瑾瑜完成签到,获得积分10
刚刚
大胆的时光完成签到 ,获得积分10
1秒前
judy发布了新的文献求助10
1秒前
超级诗桃完成签到,获得积分10
2秒前
2秒前
shi完成签到,获得积分10
3秒前
光头强应助苗笑卉采纳,获得10
4秒前
SciGPT应助内向瑾瑜采纳,获得10
4秒前
笨笨的白梅完成签到,获得积分10
6秒前
super完成签到,获得积分10
6秒前
wlL发布了新的文献求助10
7秒前
8秒前
小白发布了新的文献求助10
12秒前
Ava应助健忘的金采纳,获得10
13秒前
ahsisalah完成签到,获得积分10
14秒前
14秒前
细心嚓茶发布了新的文献求助10
15秒前
科研通AI5应助syx采纳,获得10
15秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
xiaotudou95应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
iNk应助HP采纳,获得20
17秒前
18秒前
wlL完成签到,获得积分10
19秒前
qwt发布了新的文献求助10
20秒前
风中的语堂完成签到,获得积分10
20秒前
飞仔123完成签到 ,获得积分10
21秒前
CodeCraft应助可靠的中心采纳,获得10
22秒前
羽楠完成签到,获得积分10
22秒前
汤雯慧完成签到,获得积分10
22秒前
DDDOG完成签到,获得积分10
22秒前
打打应助yl采纳,获得10
23秒前
wwwww完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241