Adjusted CT Image-Based Radiomic Features Combined with Immune Genomic Expression Achieve Accurate Prognostic Classification and Identification of Therapeutic Targets in Stage III Colorectal Cancer

无线电技术 医学 结直肠癌 阶段(地层学) 接收机工作特性 协变量 肿瘤科 曲线下面积 癌症 放射科 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yi-Ching Huang,Yi-Shan Tsai,Chung-I Li,Ren‐Hao Chan,Yu‐Min Yeh,Po-Chuan Chen,Meng-Ru Shen,Peng‐Chan Lin
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (8): 1895-1895 被引量:10
标识
DOI:10.3390/cancers14081895
摘要

To evaluate whether adjusted computed tomography (CT) scan image-based radiomics combined with immune genomic expression can achieve accurate stratification of cancer recurrence and identify potential therapeutic targets in stage III colorectal cancer (CRC), this cohort study enrolled 71 patients with postoperative stage III CRC. Based on preoperative CT scans, radiomic features were extracted and selected to build pixel image data using covariate-adjusted tensor classification in the high-dimension (CATCH) model. The differentially expressed RNA genes, as radiomic covariates, were identified by cancer recurrence. Predictive models were built using the pixel image and immune genomic expression factors, and the area under the curve (AUC) and F1 score were used to evaluate their performance. Significantly adjusted radiomic features were selected to predict recurrence. The association between the significantly adjusted radiomic features and immune gene expression was also investigated. Overall, 1037 radiomic features were converted into 33 × 32-pixel image data. Thirty differentially expressed genes were identified. We performed 100 iterations of 3-fold cross-validation to evaluate the performance of the CATCH model, which showed a high sensitivity of 0.66 and an F1 score of 0.69. The area under the curve (AUC) was 0.56. Overall, ten adjusted radiomic features were significantly associated with cancer recurrence in the CATCH model. All of these methods are texture-associated radiomics. Compared with non-adjusted radiomics, 7 out of 10 adjusted radiomic features influenced recurrence-free survival. The adjusted radiomic features were positively associated with PECAM1, PRDM1, AIF1, IL10, ISG20, and TLR8 expression. We provide individualized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC. Adjusted CT scan image-based radiomics with immune genomic expression covariates using the CATCH model can efficiently predict cancer recurrence. The correlation between adjusted radiomic features and immune genomic expression can provide biological relevance and individualized therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助wg采纳,获得10
1秒前
2秒前
威武的念波完成签到,获得积分10
2秒前
11发布了新的文献求助10
2秒前
2秒前
三生一陌发布了新的文献求助30
2秒前
hsbuuwqbdubeq发布了新的文献求助10
3秒前
3秒前
长安完成签到,获得积分10
3秒前
扶光完成签到,获得积分10
4秒前
chen发布了新的文献求助10
4秒前
山高发布了新的文献求助10
4秒前
ysm完成签到,获得积分10
4秒前
4秒前
现实的从菡完成签到,获得积分10
4秒前
胡楠发布了新的文献求助10
4秒前
5秒前
霜之哀伤发布了新的文献求助10
5秒前
烟花应助小狗乖乖怪采纳,获得10
6秒前
熬夜小猫完成签到,获得积分10
6秒前
小段完成签到,获得积分10
6秒前
changping应助闪闪的鸭子采纳,获得10
7秒前
诚心雁丝发布了新的文献求助10
7秒前
7秒前
潇洒冬日完成签到,获得积分10
7秒前
小白发布了新的文献求助10
7秒前
young完成签到,获得积分10
7秒前
7秒前
落晖发布了新的文献求助10
8秒前
djejje发布了新的文献求助10
8秒前
科研通AI5应助xiao童采纳,获得10
9秒前
Janny发布了新的文献求助10
9秒前
传奇3应助苹果映菱采纳,获得10
9秒前
小蘑菇应助lhy采纳,获得10
10秒前
10秒前
Purring完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193933
求助须知:如何正确求助?哪些是违规求助? 4376236
关于积分的说明 13628897
捐赠科研通 4231184
什么是DOI,文献DOI怎么找? 2320812
邀请新用户注册赠送积分活动 1319105
关于科研通互助平台的介绍 1269416