亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Dynamic Superwettability to Ionic/Molecular Superfluidity

离子键合 化学物理 过剩 范德瓦尔斯力 离子 化学 分子动力学 分子 能量转换 机械能 原子物理学 纳米技术 材料科学 物理 计算化学 热力学 凝聚态物理 有机化学 功率(物理)
作者
Xiqi Zhang,Bo Song,Lei Jiang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (9): 1195-1204 被引量:27
标识
DOI:10.1021/acs.accounts.2c00053
摘要

Life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis. The total energy intake of the human body is about 2000 kcal/day to maintain all of our activities, which is comparable to a power of ∼100 W. The energy required for the brain to work is equivalent to ∼20 W, and the rest of the energy (∼80 W) is used for other activities. All in vivo biosyntheses take place only at body temperature, which is much lower than that of in vitro reactions. To achieve these ultralow energy-consumption processes, there should be a kind of ultralow-resistivity matter transport in nanochannels (e.g., ionic and molecular channels), in which the directional collective motion of ions or molecules is a necessary condition rather than traditional Newton diffusion. The directional collective motion of ions and molecules is considered to be ionic/molecular superfluidity. The driving force of ionic/molecular superfluidity formation requires two necessary conditions: (1) Ions or molecules are confined at a certain distance (e.g., approximately twice Debye length (2λD) for ions or twice the van der Waals equilibrium distance (2d0) for molecules). (2) When the attractive potential energy (E0) is stronger than the thermal noise (kBTc), ionic/molecular superfluidity can be formed. The concept of ionic/molecular superfluidity will promote the understanding of energy conversion with ultralow energy consumption in biological systems. The swing of an eel's body generating electricity and cardiac resuscitation denote the conversion from mechanical energy to electrical energy, and mechanical modulation might result in a coherent resonance of ionic motion. The coherent resonance of Ca2+ in myocardium cells can induce a heartbeat, realizing the conversion from the electrical energy to the mechanical energy of a biological system. The macroscopic quantum state of ion channels is considered to be a carrier of neural information, and the environment field might play a significant role in regulating the macroscopic quantum states of various ion channels. In the biological ion channels system, the coupling of ion channels and their released photons might induce an environment wave which in turn regulates the ion oscillations in the channels to a coherent state. The states of decoherence and coherence might correspond to the states of sleep and action. We also demonstrated the decomposition of ATP to ADP released photons with a frequency of ∼34 THz, which could further drive DNA polymerization in the nanocavity of DNA polymerase. The photochemical (mid- and far-IR) reaction might be the driving force in high-efficiency biosynthesis. Quantized syntheses resonantly driven by multiple mid- and far-IR photons could be further designed in a tubular reactor with membranes of different microporous structures to achieve a high-efficiency synthesis with a low energy consumption. Finally, we point out that the Bose-Einstein condensate potentially widely exists. We expect that this Account will provide new ideas for the key problem in life science: how can life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis?
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmll发布了新的文献求助10
3秒前
所所应助mmll采纳,获得10
9秒前
Titi发布了新的文献求助10
11秒前
Artin完成签到,获得积分10
11秒前
怕黑鲂完成签到 ,获得积分10
15秒前
大模型应助Sakura采纳,获得10
22秒前
weilei完成签到,获得积分10
26秒前
Owen应助WWZ采纳,获得10
31秒前
VDC应助WQY采纳,获得30
32秒前
34秒前
Sakura发布了新的文献求助10
39秒前
VDC完成签到,获得积分0
45秒前
Arthur完成签到 ,获得积分10
46秒前
50秒前
WWZ发布了新的文献求助10
53秒前
哈哈哈开开心心完成签到,获得积分10
1分钟前
小蘑菇应助xj采纳,获得10
1分钟前
1分钟前
1分钟前
莓烦恼完成签到 ,获得积分10
1分钟前
xj发布了新的文献求助10
1分钟前
Hans完成签到,获得积分10
1分钟前
JamesPei应助完美芒果采纳,获得10
1分钟前
1分钟前
虚拟发布了新的文献求助10
1分钟前
完美世界应助虚拟采纳,获得10
1分钟前
Vapour关注了科研通微信公众号
1分钟前
1分钟前
失眠天亦应助科研通管家采纳,获得10
1分钟前
完美芒果发布了新的文献求助10
1分钟前
杨怂怂完成签到 ,获得积分10
2分钟前
Vapour发布了新的文献求助10
2分钟前
曾经的彩虹完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NiceSunnyDay完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
激昂的松鼠完成签到,获得积分10
3分钟前
fqx379发布了新的文献求助10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782649
求助须知:如何正确求助?哪些是违规求助? 3328049
关于积分的说明 10234269
捐赠科研通 3043003
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971